首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   443篇
  免费   62篇
  2021年   9篇
  2020年   3篇
  2019年   8篇
  2018年   9篇
  2017年   4篇
  2016年   5篇
  2015年   10篇
  2014年   20篇
  2013年   9篇
  2012年   25篇
  2011年   19篇
  2010年   17篇
  2009年   12篇
  2008年   16篇
  2007年   17篇
  2006年   21篇
  2005年   20篇
  2004年   14篇
  2003年   21篇
  2002年   16篇
  2001年   15篇
  2000年   22篇
  1999年   14篇
  1998年   5篇
  1997年   3篇
  1996年   5篇
  1995年   5篇
  1994年   4篇
  1992年   8篇
  1991年   11篇
  1990年   6篇
  1989年   8篇
  1988年   6篇
  1987年   6篇
  1986年   6篇
  1985年   3篇
  1984年   3篇
  1983年   5篇
  1982年   9篇
  1981年   5篇
  1980年   7篇
  1979年   9篇
  1978年   8篇
  1977年   10篇
  1976年   9篇
  1975年   4篇
  1974年   4篇
  1972年   6篇
  1971年   6篇
  1970年   3篇
排序方式: 共有505条查询结果,搜索用时 15 毫秒
151.

Background  

Proteomic analysis has proven to be the most powerful method for describing plant species and lines, and for identification of proteins in complex mixtures. The strength of this method resides in high resolving power of two-dimensional electrophoresis (2-DE), coupled with highly sensitive mass spectrometry (MS), and sequence homology search. By using this method, we might find polymorphic markers to differentiate peanut subspecies.  相似文献   
152.
A new mechanism of selective transport and localization of proteins inside any living cell is presented. The mechanism is based on pH-induced protein trapping. It is shown that spontaneous and unique spatial redistribution of different proteins is possible in any aqueous solution with stable non-uniform distribution of H(+) ions. This phenomenon was observed in artificial systems with fixed non-uniform pH distribution and in living cells.  相似文献   
153.
Rad54 protein plays an important role in the recombinational repair of double-strand DNA (dsDNA) breaks. It is a dsDNA-dependent ATPase that belongs to the Swi2/Snf2 family of chromatin-remodeling proteins. Rad54 remodels (1) DNA structure, (2) chromatin structure, and (3) Rad51-dsDNA complexes. These abilities imply that Rad54 moves along DNA. Here, we provide direct evidence of Rad54 translocation by visualizing its movement along single molecules of dsDNA. When compared to the remodeling processes, translocation is unexpectedly rapid, occurring at 301 +/- 22 bp/s at 25 degrees C. Rad54 binds randomly along the dsDNA and moves in either of the two possible directions with a velocity dependent on ATP concentration (K(m) = 97 +/- 28 microM). Movement is also surprisingly processive: the average distance traveled is approximately 11,500 bp, with molecules traversing up to 32,000 bp before stopping. The mechanistic implications of this vigorous Rad54 translocase activity in chromatin and protein-DNA complex remodeling are discussed.  相似文献   
154.
155.
The most widely accepted mechanism of male urethral development proposes that the urethral plate is elevated by urethral folds which fuse ventrally in a proximal-to-distal sequence. Unlike its proximal counterpart, the urethra which forms within the glans is lined by a stratified squamous epithelium and has a more controversial development. One theory supports the idea that fusion of the urethral folds extends all the way to the tip of the glans. Another theory suggests that a solid ectodermal in-growth of epidermis canalizes the glandar urethra. We hypothesized that the use of immunohistochemical staining and tissue recombinant grafting would delineate the epithelia involved and lend clues to their origin. Thirty-six human fetal phallic specimens of gestational ages 5-22 weeks were sectioned and stained immunohistochemically with antibodies raised against different cytokeratins. Evaluation of the sections showed that the urethral plate, an extension of the urogenital sinus, extended to the tip of the phallus and maintained patency and continuity throughout the process of urethral development. The entire urethra, including the glans portion, was formed by dorsal extension and disintegration of the urethral plate combined with ventral growth and fusion of the urethral folds. Sections of the distal glandar urethra showed no evidence of a solid ectodermal ingrowth. Rather, immunostaining results at different ages suggested differentiation of the endodermal urethral plate into a stratified squamous epithelium. To determine whether urothelium could be induced to express a stratified squamous phenotype, mouse fetal bladder epithelium was combined with rat fetal genital tubercle mesenchyme and grown under the renal capsule of athymic mice. The bladder epithelium differentiated into a stratified squamous epithelium. Thus, proper mesenchymal signaling may induce differentiation of urothelium into a stratified squamous phenotype, such as during development of the urethra of the glans penis.  相似文献   
156.
Cellular and molecular mechanisms of development of the external genitalia   总被引:7,自引:0,他引:7  
The limb and external genitalia are appendages of the body wall. Development of these structures differs fundamentally in that masculine development of the external genitalia is androgen dependent, whereas development of the limb is not. Despite this fundamental difference in developmental regulation, epithelial-mesenchymal interactions play key roles in the development of both structures, and similar regulatory molecules are utilized as mediators of morphogenetic cell-cell interactions during development of both the limb and external genitalia. Given the relatively high incidence of hypospadias, a malformation of penile development, it is appropriate and timely to review the morphological, endocrine, and molecular mechanisms of development of the genital tubercle (GT), the precursor of the penis in males and the clitoris in females. Morphological observations comparing development of the GT in humans and mouse emphasize the validity of the mouse as an animal model of GT development and validate the results of experimental studies. Accordingly, the use of mutant mice provides important insights into the roles of specific regulatory molecules in development of the external genitalia. While our current understanding of the morphological and molecular mechanisms of mammalian external genitalia development is still rudimentary, this review summarizes the current state of our knowledge and whenever possible draws from the rich experimental embryology literature on other relevant organs such as the developing limb. Future research on the hormonal and molecular mechanisms of GT development may yield strategies to prevent or reduce the incidence of hypospadias and to elucidate the molecular genetic mechanisms of GT morphogenesis, especially in relation to common organogenetic pathways utilized in other organ systems.  相似文献   
157.
RecBCD enzyme is a heterotrimeric helicase/nuclease that initiates homologous recombination at double-stranded DNA breaks. Several of its activities are regulated by the DNA sequence chi (5'-GCTGGTGG-3'), which is recognized in cis by the translocating enzyme. When RecBCD enzyme encounters chi, the intensity and polarity of its nuclease activity are changed, and the enzyme gains the ability to load RecA protein onto the chi-containing, unwound single-stranded DNA. Here, we show that interaction with chi also affects translocation by RecBCD enzyme. By observing translocation of individual enzymes along single molecules of DNA, we could see RecBCD enzyme pause precisely at chi. Furthermore, and more unexpectedly, after pausing at chi, the enzyme continues translocating but at approximately one-half the initial rate. We propose that interaction with chi results in an enzyme in which one of the two motor subunits, likely the RecD motor, is uncoupled from the holoenzyme to produce the slower translocase.  相似文献   
158.
A requirement for understanding morphogenesis is being able to quantify expansion at the cellular scale. Here, we present new software (RootflowRT) for measuring the expansion profile of a growing root at high spatial and temporal resolution. The software implements an image processing algorithm using a novel combination of optical flow methods for deformable motion. The algorithm operates on a stack of nine images with a given time interval between each (usually 10 s) and quantifies velocity confidently at most pixels of the image. The root does not need to be marked. The software calculates components of motion parallel and perpendicular to the local tangent of the root's midline. A variation of the software has been developed that reports the overall root growth rate versus time. Using this software, we find that the growth zone of the root can be divided into two distinct regions, an apical region where the rate of motion, i.e. velocity, rises gradually with position and a subapical region where velocity rises steeply with position. In both zones, velocity increases almost linearly with position, and the transition between zones is abrupt. We observed this pattern for roots of Arabidopsis, tomato (Lycopersicon lycopersicum), lettuce (Lactuca sativa), alyssum (Aurinia saxatilis), and timothy (Phleum pratense). These velocity profiles imply that relative elongation rate is regulated in a step-wise fashion, being low but roughly uniform within the meristem and then becoming high, but again roughly uniform, within the zone of elongation. The executable code for RootflowRT is available from the corresponding author on request.  相似文献   
159.

Background

The majority of experimentally verified molecular interaction and biological pathway data are present in the unstructured text of biomedical journal articles where they are inaccessible to computational methods. The Biomolecular interaction network database (BIND) seeks to capture these data in a machine-readable format. We hypothesized that the formidable task-size of backfilling the database could be reduced by using Support Vector Machine technology to first locate interaction information in the literature. We present an information extraction system that was designed to locate protein-protein interaction data in the literature and present these data to curators and the public for review and entry into BIND.

Results

Cross-validation estimated the support vector machine's test-set precision, accuracy and recall for classifying abstracts describing interaction information was 92%, 90% and 92% respectively. We estimated that the system would be able to recall up to 60% of all non-high throughput interactions present in another yeast-protein interaction database. Finally, this system was applied to a real-world curation problem and its use was found to reduce the task duration by 70% thus saving 176 days.

Conclusions

Machine learning methods are useful as tools to direct interaction and pathway database back-filling; however, this potential can only be realized if these techniques are coupled with human review and entry into a factual database such as BIND. The PreBIND system described here is available to the public at http://bind.ca. Current capabilities allow searching for human, mouse and yeast protein-interaction information.  相似文献   
160.
The purpose of this study was to determine the effect of muscle glycogen depletion and subsequent replenishment on anaerobic capacity of horses. In a blinded crossover study, seven fit horses performed glycogen-depleting exercise on two occasions. Horses were infused after glycogen-depleting exercise with either 6 g/kg body wt of glucose as a 13.5% solution in 0.9% NaCl (Glu) or with 0.9% NaCl (Sal) of equivalent volume. Subsequently, horses performed a high-speed exercise test (120% of maximal rate of oxygen consumption) to estimate maximum accumulated oxygen deficit. Replenishment of muscle glycogen was greater (P < 0.05) in Glu [from 24.7 +/- 7.2 (SE) to 116.5 +/- 7 mmol/kg wet wt before and after infusion, respectively] than in Sal (from 23.4 +/- 7.2 to 47.8 +/- 5.7 mmol/kg wet wt before and after infusion, respectively). Run time to fatigue during the high-speed exercise test (97.3 +/- 8.2 and 70.8 +/- 8.3 s, P < 0.05), maximal accumulated oxygen deficit (105.7 +/- 9.3 and 82.4 +/- 10.3 ml O(2) equivalent/kg, P < 0.05), and blood lactate concentration at the end of the high-speed exercise test (11.1 +/- 1.4 and 9.2 +/- 3.7 mmol/l, P < 0.05) were greater for Glu than for Sal, respectively. We concluded that decreased availability of skeletal muscle glycogen stores diminishes anaerobic power generation and capacity for high-intensity exercise in horses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号