首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   11篇
  2023年   2篇
  2022年   1篇
  2021年   5篇
  2020年   4篇
  2019年   1篇
  2018年   7篇
  2017年   2篇
  2016年   5篇
  2015年   4篇
  2014年   3篇
  2013年   10篇
  2012年   18篇
  2011年   17篇
  2010年   10篇
  2009年   10篇
  2008年   10篇
  2007年   12篇
  2006年   5篇
  2005年   4篇
  2004年   4篇
  2003年   5篇
  2002年   5篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1996年   3篇
  1992年   3篇
  1990年   2篇
  1986年   1篇
  1981年   2篇
  1971年   1篇
排序方式: 共有164条查询结果,搜索用时 421 毫秒
21.
22.
Autophagy is a physiologically regulated and evolutionary conserved process that plays a critical role in degradation of cytoplasmic proteins and other macromolecules within the lysosomes. Beclin-1, the mammalian orthologue of yeast Atg6, is an important mediator of autophagy that has been studied in many human cancers. However, the expression of Beclin-1 has not yet been investigated in oral cancer. We for the first time investigated the expression of Beclin-1 in serum and tissues and correlated it with the clinic-pathological features of oral cancer patients. m-RNA expression of Beclin-1 was evaluated in tumor and normal areas of surgical specimens from 10 oral cancer patients by real-time PCR. Approximately, 8-fold lower expression (p<0.001) of Beclin-1 mRNA was observed in tumor tissue as compared to the normal tissue. Serum levels of Beclin-1 were evaluated by SPR and ELISA. No significant difference was observed in serum Beclin-1 levels in patients as compared to healthy subjects, similarly no correlation was found between serum levels and clinic-pathological parameters such as stage, lymph node involvement and tumor size. Our results demonstrate that down-regulation of Beclin-1 may play an important role in the development and progression of oral cancer possibly by dysregulation of autophagy in tumor cells.  相似文献   
23.
24.
The role of polyketide and non‐ribosomal proteins from the class of small molecule metabolism of Mycobacterium tuberculosis is well documented in envelope organization, virulence, and pathogenesis. Consequently, the identification of T cell epitopes from these proteins could serve to define potential antigens for the development of vaccines. Fourty‐one proteins from polyketide and non‐ribosomal peptide synthesis of small molecule metabolism proteins of M tuberculosis H37Rv were analyzed computationally for the presence of HLA class I binding nanomeric peptides. All possible overlapping nanomeric peptide sequences from 41 small molecule metabolic proteins were generated through in silico and analyzed for their ability to bind to 33 alleles belonging to A, B, and C loci of HLA class I molecule. Polyketide and non‐ribosomal protein analyses revealed that 20% of generated peptides were predicted to bind HLA with halftime of dissociation T1/2 ≥ 100 minutes, and 77% of them were mono‐allelic in their binding. The structural bases for recognition of nanomers by different HLA molecules were studied by structural modeling of HLA class I‐peptide complexes. Pathogen peptides that could mimic as self‐peptides or partially self‐peptides in the host were excluded using a comparative study with the human proteome; thus, subunit or DNA vaccines will have more chance of success.  相似文献   
25.
26.
Gene-modified tumor cells as cellular vaccine   总被引:5,自引:0,他引:5  
 The identification and characterization of many tumor antigens and the parallel explosion of knowledge of the cellular and molecular mechanisms of antigen recognition by the immune system have given renewed hopes that immunogenetherapy could be a promising modality to treat certain tumors. Many different novel strategies have been developed to derive genetically modified tumor cells and use them as cellular vaccines to induce useful antitumor immunity in a variety of animal tumor models. This review discusses induction of tumor immunity by injecting tumor cells that are genetically engineered to secrete various cytokines and to express major histocompatibility complex molecules and/or costimulatory molecules. While there has been a great success in inducing excellent antitumor immunity in a variety of tumor models, there are some difficulties and limitations in the application of these gene-modified tumor cells for the treatment of preexisting tumors. A number of improvements and modifications are already underway to overcome some of these problems. Received: 6 August 1996 / Accepted: 20 September 1996  相似文献   
27.
Cytoplasmic capping is catalyzed by a complex that contains capping enzyme (CE) and a kinase that converts RNA with a 5′-monophosphate end to a 5′ diphosphate for subsequent addition of guanylic acid (GMP). We identify the proline-rich C-terminus as a new domain of CE that is required for its participation in cytoplasmic capping, and show the cytoplasmic capping complex assembles on Nck1, an adapter protein with functions in translation and tyrosine kinase signaling. Binding is specific to Nck1 and is independent of RNA. We show by sedimentation and gel filtration that Nck1 and CE are together in a larger complex, that the complex can assemble in vitro on recombinant Nck1, and Nck1 knockdown disrupts the integrity of the complex. CE and the 5′ kinase are juxtaposed by binding to the adjacent domains of Nck1, and cap homeostasis is inhibited by Nck1 with inactivating mutations in each of these domains. These results identify a new domain of CE that is specific to its function in cytoplasmic capping, and a new role for Nck1 in regulating gene expression through its role as the scaffold for assembly of the cytoplasmic capping complex.  相似文献   
28.
29.
30.
Cholesterol mesogen containing monomer, cholesteryl acrylamido butyrate (CAB) with the novel spacer group drawn from 4-amino butyric acid has been demonstrated to exhibit good reactivity with 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS) to yield copolymers with CAB content as high as 15 mol % hitherto not achieved. The spacer group is shown to provide the twin benefits of enhanced reactivity and solubility in water. The high pK(a) at > or =9.90 of these copolymers estimated from potentiometric studies demonstrates packing of AMPS segments as ionic clusters. The higher CAB in copolymer C provides the most densely packed nonpolar microdomains. From fluorescence quenching studies, the cross-linking provided by the cholesterol chains favoring intra- or intermolecular aggregated structures has been established. At the air/solution interface, copolymer C exhibits the most close-packed structures exhibiting "a" of 41.2 A(2)/molecule. The effect of neutralization on the adsorption characteristics is investigated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号