首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   2篇
  2021年   1篇
  2020年   2篇
  2019年   4篇
  2016年   2篇
  2015年   10篇
  2014年   6篇
  2013年   8篇
  2012年   5篇
  2011年   9篇
  2010年   5篇
  2009年   6篇
  2008年   3篇
  2007年   10篇
  2006年   5篇
  2005年   7篇
  2004年   5篇
  2003年   8篇
  2002年   3篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1990年   3篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1966年   1篇
排序方式: 共有122条查询结果,搜索用时 187 毫秒
41.
Interactions of connexins with other membrane channels and transporters   总被引:2,自引:0,他引:2  
Cell-to-cell communication through gap junctions exists in most animal cells and is essential for many important biological processes including rapid transmission of electric signals to coordinate contraction of cardiac and smooth muscle, the intercellular propagation of Ca(2+) waves and synchronization of physiological processes between adjacent cells within a tissue. Recent studies have shown that connexins (Cx) can have either direct or indirect interactions with other plasma membrane ion channels or membrane transport proteins with important functional consequences. For example, in tissues most severely affected by cystic fibrosis (CF), activation of the CF Transmembrane Conductance Regulator (CFTR) has been shown to influence connexin function. Moreover, a direct interaction between Cx45.6 and the Major Intrinsic Protein/AQP0 in lens appears to influence the process of cell differentiation whereas interactions between aquaporin 4 (AQP4) and Cx43 in mouse astrocytes may coordinate the intercellular movement of ions and water between astrocytes. In this review, we discuss evidence supporting interactions between Cx and membrane channels/transporters including CFTR, aquaporins, ionotropic glutamate receptors, and between pannexin1, another class of putative gap-junction-forming proteins, and Kvbeta3, a regulatory beta-subunit of voltage gated potassium channels. Although the precise molecular nature of these interactions has yet to be defined, their consequences may be critical for normal tissue homeostasis.  相似文献   
42.
Mutations of the protein tyrosine phosphatase SHP-2 are implicated in human diseases, causing Noonan syndrome (NS) and related developmental disorders or contributing to leukemogenesis depending on the specific amino acid substitution involved. SHP-2 is composed by a catalytic (PTP) and two regulatory (N-SH2 and C-SH2) domains that bind to signaling partners and control the enzymatic activity by limiting the accessibility of the catalytic site. Wild type SHP-2 and four disease-associated mutants recurring in hematologic malignancies (Glu76Lys and Ala72Val) or causing NS (Glu76Asp and Ala72Ser), with affected residues located in the PTP-interacting region of the N-SH2 domain, were analyzed by molecular dynamics simulations and in vitro biochemical assays. Simulations demonstrate that mutations do not affect significantly the conformation of the N-SH2 domain. Rather they destabilize the interaction of this domain with the catalytic site, with more evident effects in the two leukemia associated mutants. Consistent with this structural evidence, mutants exhibit an increased level of basal phosphatase activity in the order Glu76Lys > Ala72Val > Glu76Asp > Ala72Ser > WT. The experimental data also show that the mutants with higher basal activity are more responsive to an activating phosphopeptide. A thermodynamic analysis demonstrates that an increase in the overall phosphopeptide affinity of mutants can be explained by a shift in the equilibrium between the inactive and active SHP-2 structure. These data support the view that an increase in the affinity of SHP-2 for its binding partners, caused by destabilization of the closed, inactive conformation, rather than protein basal activation per se, would represent the molecular mechanism, leading to pathogenesis in these mutants.  相似文献   
43.
Extracts from 44 species of seaweed from Gran Canaria (Canary Islands, Spain) were screened for the production of antibacterial and antifungal compounds against a panel of gram-negative and gram-positive bacteria, mycobacteria, yeasts and fungi. A total of 28 species displayed antibacterial activity, of which six also showed antifungal activity. Asparagopsis taxiformis and Cymopolia barbata were the species with the strongest activities against the broadest spectrum of target microorganisms. All the species with antibacterial activity were active against gram-positive bacteria, whereas only two species, A. taxiformis and Osmundea hybrida, were active against mycobacteria. The production of secondary metabolites with antimicrobial activities by the macroalgae was also studied under different conditions, although no common trend for bioactivity was observed.  相似文献   
44.
n-Alkanes, esters, aldehydes, free alcohols, -diketones and hydroxy--diketones were found to be the lipid components of the cuticular waxes of common wheat Chinese Spring (Triticum aestivum L.). The ditelosomic lines 7A-L and 7D-S showed a dramatic decrease in the amount of -diketones and hydroxy -diketones which are reduced to traces. The homologue composition within each class of compounds has also been determined for all three of the lines of wheat. The effects of chromosomal deficiencies have been demonstrated. Chromatographic techniques and mass spectrometry have been used for the separation and identification of the substances which compose the waxes. This study has provided further evidence of the role of genes situated on well defined chromosomes in determining the nature of classes of compounds composing wax and governing the homologous composition within each class of substances.  相似文献   
45.
Connexin-based gap junction hemichannels: gating mechanisms   总被引:13,自引:0,他引:13  
Connexins (Cxs) form hemichannels and gap junction channels. Each gap junction channel is composed of two hemichannels, also termed connexons, one from each of the coupled cells. Hemichannels are hexamers assembled in the ER, the Golgi, or a post Golgi compartment. They are transported to the cell surface in vesicles and inserted by vesicle fusion, and then dock with a hemichannel in an apposed membrane to form a cell-cell channel. It was thought that hemichannels should remain closed until docking with another hemichannel because of the leak they would provide if their permeability and conductance were like those of their corresponding cell-cell channels. Now it is clear that hemichannels formed by a number of different connexins can open in at least some cells with a finite if low probability, and that their opening can be modulated under various physiological and pathological conditions. Hemichannels open in different kinds of cells in culture with conductance and permeability properties predictable from those of the corresponding gap junction channels. Cx43 hemichannels are preferentially closed in cultured cells under resting conditions, but their open probability can be increased by the application of positive voltages and by changes in protein phosphorylation and/or redox state. In addition, increased activity can result from the recruitment of hemichannels to the plasma membrane as seen in metabolically inhibited astrocytes. Mutations of connexins that increase hemichannel open probability may explain cellular degeneration in several hereditary diseases. Taken together, the data indicate that hemichannels are gated by multiple mechanisms that independently or cooperatively affect their open probability under physiological as well as pathological conditions.  相似文献   
46.
Synthetic fluorescent analogs of the natural lipopeptide trichogin GA IV were used to investigate the peptide position and orientation in model membranes. A translocation assay based on Forster energy transfer indicates that trichogin is associated to both the outer and inner leaflet of the membrane, even at low concentration, when it is not active. Fluorescence quenching measurements, performed by using water soluble quenchers and quenchers positioned in the membrane at different depths, indicate that at low membrane-bound peptide/lipid ratios trichogin lies close to the region of polar headgroups. By increasing peptide concentration until membrane leakage takes place, a cooperative transition occurs and a significant fraction of the peptide becomes deeply buried into the bilayer. Remarkably, this change in peptide position is strictly coupled with peptide aggregation. Therefore, the mechanism of trichogin action can be envisaged as based on a two-state transition controlled by peptide concentration. One state is the monomeric, surface bound and inactive peptide, and the other state is a buried, aggregated form, which is responsible for membrane leakage and bioactivity.  相似文献   
47.
NifS-like proteins are pyridoxal 5′-phosphate (PLP)-dependent enzymes involved in sulphur transfer metabolism. These enzymes have been catalogued as cysteine desulphurases (CDs) which catalyse the conversion of L-cysteine into L-alanine and an enzyme-bound persulphide radical. This reaction, assisted by different scaffold protein machineries, seems to be the main source of sulphur for the synthesis of essential cofactors of the[Fe-S] cluster. CDs genes have been detected in the tree domains of life, but, up until now, there has been no biochemical characterisation or study into the physiological role of this enzyme in haloarchaea. In this study, we have cloned, expressed and characterised a cysteine desulphurase (SufS) from Haloferax volcanii and demonstrated that this protein is able to reconstitute the [Fe-S] cluster of halophilic ferredoxin.  相似文献   
48.
Erysipelothrix rhusiopathiae is the causative agent of erysipelas, a disease of many mammalian and avian species, mainly swine and turkeys. In cetaceans, erysipelas is considered to be the most common infection in juvenile individuals, which have not been vaccinated. Moreover, the disease manifest in both forms, the dermatologic and the acute septicemic forms, has been reported in various species of dolphins and whales. It is difficult to diagnose erysipelas by currently available approaches. Moreover, it is mainly based on culture methods and also PCR methods, which are currently being developed. At the present stage, prophylactic approaches are based on antibiotic therapy and vaccination mostly with porcine erysipelas vaccines. In the present study, an Indirect Immuno Fluorescence method for the detection of dolphin antibodies levels against E. rhusiopathiae was developed and applied in two different groups of captive bottlenose dolphins (Tursiops truncatus) from Loro Parque (Tenerife, Canary Islands, Spain) and L’Oceanogràfic de Valencia (Valencia, Spain) in order to check the tittering levels of antibodies after application of porcine erysipelas vaccines in the studied dolphins.  相似文献   
49.
Objective: Obesity is associated with lower rates of skeletal muscle fatty acid oxidation (FAO), which is linked to insulin resistance. FAO is reduced further in obese African‐American (AAW) vs. white women (CW) and may also be lower in lean AAW vs. CW. In lean CW, endurance exercise training (EET) elevates the oxidative capacity of skeletal muscle. Therefore, we determined whether EET would elevate skeletal muscle FAO similarly in AAW and CW with a lower lipid oxidative capacity. Research Methods and Procedures: In vitro rates of FAO were assessed in rectus abdominus muscle strips using [1‐14C] palmitate (Pal) from lean AAW [BMI = 24.2 ± 0.9 (standard error) kg/m2] and CW (23.6 ± 0.8 kg/m2) undergoing voluntary abdominal surgery. Lean AAW (22 ± 0.9 kg/m2) and CW (24 ± 0.8 kg/m2) and obese AAW (36 ± 1.2 kg/m2) and CW (40 ± 1.3 kg/m2) underwent 10 consecutive days of EET on a cycle ergometer (60 min/d, 75% peak oxygen uptake). FAO was measured in vastus lateralis homogenates as captured 14CO2 using [1‐14C] Pal, palmitoyl‐CoA (Pal‐CoA), and palmityl‐carnitine (Pal‐Car). Results: Muscle strip experiments showed suppressed rates of FAO (p = 0.03) in lean AAW vs. CW. EET increased the rates of skeletal muscle Pal oxidation (p = 0.05) in both lean AAW and CW. In obese subjects, Pre‐EET Pal (but not Pal‐CoA or Pal‐Car) oxidation was lower (p = 0.05) in AAW vs. CW. EET increased Pal oxidation 100% in obese AAW (p < 0.05) and 59% (p < 0.05) in obese CW. Similar increases (p < 0.05) in post‐EET FAO were observed for Pal‐CoA and Pal‐Car in both groups. Discussion: Both lean and obese AAW possess a lower capacity for skeletal muscle FAO, but EET increases FAO similarly in both AAW and CW. These data suggest the use of EET for treatment against obesity and diabetes for both AAW and CW.  相似文献   
50.
Laminin peptides influence cancer biology. We investigated the role of a laminin-derived peptide C16 regulating invadopodia molecules in human prostate cancer cells (DU145). C16 augmented invadopodia activity of DU145 cells, and stimulated expression Tks4, Tks5, cortactin, and membrane-type matrix metalloproteinase 1. Reactive oxygen species generation is also related to invadopodia formation. This prompted us to address whether C16 would induce reactive oxygen species generation in DU145 cells. Quantitative fluorescence and flow cytometry showed that the peptide C16 increased reactive oxygen species in DU145 cells. Furthermore, significant colocalization between Tks5 and reactive oxygen species was observed in C16-treated cells. Results suggested that the peptide C16 increased Tks5 and reactive oxygen species in prostate cancer cells. The role of C16 increasing Tks and reactive oxygen species are novel findings on invadopodia activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号