首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   418篇
  免费   40篇
  2022年   5篇
  2021年   7篇
  2020年   5篇
  2019年   5篇
  2018年   8篇
  2017年   5篇
  2016年   21篇
  2015年   15篇
  2014年   25篇
  2013年   31篇
  2012年   31篇
  2011年   26篇
  2010年   15篇
  2009年   20篇
  2008年   21篇
  2007年   19篇
  2006年   18篇
  2005年   13篇
  2004年   14篇
  2003年   23篇
  2002年   23篇
  2001年   8篇
  2000年   8篇
  1999年   11篇
  1998年   8篇
  1997年   6篇
  1996年   3篇
  1995年   6篇
  1994年   2篇
  1993年   2篇
  1992年   7篇
  1991年   6篇
  1990年   5篇
  1989年   5篇
  1988年   1篇
  1987年   3篇
  1986年   7篇
  1984年   4篇
  1983年   2篇
  1982年   5篇
  1979年   3篇
  1977年   1篇
  1976年   1篇
  1975年   3篇
  1972年   1篇
排序方式: 共有458条查询结果,搜索用时 562 毫秒
31.
The establishment of axial polarity in the Drosophila egg and embryo depends on intercellular communication between two cell types in the ovary, the germline, and the soma. The genes gurken and egfr encode two essential players of this communication pathway. Gurken protein, a TGF-alpha-like molecule, is expressed in the germline, while the EGF-receptor homolog, Egfr, is expressed in the somatic cells of the ovary. Using the yeast two-hybrid system we show here, for the first time, that Gurken protein directly binds to the extracellular domain of Egfr. This direct physical association requires the presence of an intact EGF motif within Gurken protein. Furthermore, we provide evidence that this characteristic motif may be sufficient for interaction with the receptor, at list in vitro. Our results firmly establish Gurken as the germline ligand of Drosophila Egfr.  相似文献   
32.
33.
34.
Increased oxidative stress is believed to be one of the mechanisms responsible for hyperglycemia-induced tissue damage and diabetic complications. In these studies, we undertook to characterize glucose uptake and oxidative stress in adipocytes of type 2 diabetic animals and to determine whether these promote the activation of PKC-delta. The adipocytes used were isolated either from C57Bl/6J mice that were raised on a high-fat diet (HF) and developed obesity and insulin resistance or from control animals. Basal glucose uptake significantly increased (8-fold) in HF adipocytes, and this was accompanied with upregulation of GLUT1 expression levels. Insulin-induced glucose uptake was inhibited in HF adipocytes and GLUT4 content reduced by 20% in these adipocytes. Reactive oxygen species (ROS) increased twofold in HF adipocytes compared with control adipocytes and were largely reduced with decreased glucose concentrations. At zero glucose, ROS levels were reduced to the normal levels seen in control adipocytes. The activity of PKC-delta increased twofold in HF adipocytes compared with control adipocytes and was further activated by H2O2. Moreover, PKC-delta activity was inhibited in HF adipocytes either by glucose deprivation or by treatment with the antioxidant N-acetyl-l-cysteine. In summary, we propose that increased glucose intake in HF adipocytes increases oxidative stress, which in turn promotes the activation of PKC-delta. These consequential events may be responsible, at least in part, for development of HF diet-induced insulin resistance in the fat tissue.  相似文献   
35.
The objective of this study was to investigate the effects of radiofrequency radiation emitted from cellular phones on the lipid composition, malondialdehyde concentration, p53 immune reactivity, sperm count, morphology, histological structure of testes, and on rectal temperature of rats exposed to microwave radiation emitted from cellular phones. Sixteen Spraque-Dawley rats were separated into two groups of eight, sham exposed (control) and experimental. The rats were confined in plexiglas cages specially designed for this study, and cellular phones were placed 0.5 cm under the cages. For the experimental group, cellular phones were activated 20 min per day (7 days a week) for 1 month. For the control group, the cellular phones were placed beneath the cages for 20 min a day, but the phones were turned off. Rectal temperatures were measured weekly. For 250 mW radiated power, the whole body average SAR (rms) is 0.52 W/kg and 1 g averaged peak SAR (rms) is 3.13 W/kg. The Mann-Whitney U-test was used for statistical comparisons of groups. No statistically significant alteration in any of the endpoints was noted. This study found no evidence suggesting an adverse effect of cell phone exposure on measures of testicular function or structure.  相似文献   
36.
In an agroindustrial wastewater pond, a naturally occurring unicellular microalga, Chlorella vulgaris, was closely associated with the terrestrial plant-associative N2-fixing bacterium Phyllobacterium myrsinacearum. When the two microorganisms were artificially coimmobilized in alginate beads, they shared the same internal bead cavities, and the production of five microalgal pigments increased, but there were no effects on the number of the cells or the biomass of the microalga. The association, however, reduces the ability of C. vulgaris to remove ammonium ions and phosphorus from water. The bacterium produced nitrate from ammonium in synthetic wastewater with or without the presence of the microalga, and fixed nitrogen in two culture media. Our results suggest that interactions between microalgae and associative bacteria should be considered when cultivating microalgae for wastewater treatment.  相似文献   
37.
38.
RP135 is a 24-residue peptide corresponding to the principal neutralizing determinant of the envelope glycoprotein gp120 of the human immunodeficiency virus type 1. We have studied the conformation of RP135 in complex with a neutralizing antibody 0.5 raised against gp120 by 2D NMR spectroscopy. The antigenic determinant recognized by this antibody was mapped using a combination of HOHAHA and ROESY measurements, in which resonances of the Fab and the tightly bound peptide residues are eliminated and the mobile residues of the bound peptide are sequentially assigned. We found that residues Ser6 - Thr19 are part of the epitope, while Lys5 and Ile20 are at its boundaries. Difference spectroscopy was applied to study the conformation of the bound peptide representing the epitope within the 52 kDa of the Fab complex. Specific residues of the peptide were deuterated or replaced and the difference between the NOESY spectrum of the complex with the unlabeled residue and the NOESY spectrum of the complex with the modified residue revealed the interactions of the labeled residue both within the peptide and with the Fab fragment. A total of 122 distance restraints derived from the difference spectra enabled the calculation of the structure of the bound peptide. The peptide forms a 10-residue loop, while the two segments flanking this loop interact extensively with each other and possibly form anti-parallel -strands. The loop conformation could be observed due to the unusual large size (17 residues) of the antigenic determinant recognized by 0.5.  相似文献   
39.
40.
We systematically study how diverse physiologic systems in the human organism dynamically interact and collectively behave to produce distinct physiologic states and functions. This is a fundamental question in the new interdisciplinary field of Network Physiology, and has not been previously explored. Introducing the novel concept of Time Delay Stability (TDS), we develop a computational approach to identify and quantify networks of physiologic interactions from long-term continuous, multi-channel physiological recordings. We also develop a physiologically-motivated visualization framework to map networks of dynamical organ interactions to graphical objects encoded with information about the coupling strength of network links quantified using the TDS measure. Applying a system-wide integrative approach, we identify distinct patterns in the network structure of organ interactions, as well as the frequency bands through which these interactions are mediated. We establish first maps representing physiologic organ network interactions and discover basic rules underlying the complex hierarchical reorganization in physiologic networks with transitions across physiologic states. Our findings demonstrate a direct association between network topology and physiologic function, and provide new insights into understanding how health and distinct physiologic states emerge from networked interactions among nonlinear multi-component complex systems. The presented here investigations are initial steps in building a first atlas of dynamic interactions among organ systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号