首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   1篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2012年   3篇
  2011年   4篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2000年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1983年   1篇
  1979年   2篇
  1977年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
31.
The role of IL-1R-associated kinase (IRAK)1 and its interaction with protein kinase C (PKC)δ in monocytes to regulate IL-1β production has not been reported so far. The present study thus investigates such mechanisms in the THP1 cell line and human monocytes. PMA treatment to THP1 cells induced CD11b, TLR2, TLR4, CD36, IRAK1, IRAK3, and IRAK4 expression, IRAK1 kinase activity, PKCδ and JNK phosphorylation, AP-1 and NF-κB activation, and secretory IL-1β production. Moreover, PMA-induced IL-1β production was significantly reduced in the presence of TLR2, TLR4, and CD11b Abs. Rottlerin, a PKCδ-specific inhibitor, significantly reduced PMA-induced IL-1β production as well as CD11b, TLR2 expression, and IRAK1-JNK activation. In PKCδ wild-type overexpressing THP1 cells, IRAK1 kinase activity and IL-1β production were significantly augmented, whereas recombinant inactive PKCδ and PKCδ small interfering RNA significantly inhibited basal and PMA-induced IRAK1 activation and IL-1β production. Endogenous PKCδ-IRAK1 interaction was observed in quiescent cells, and this interaction was regulated by PMA. IRAK1/4 inhibitors, their small interfering RNAs, and JNK inhibitor also attenuated PMA-induced IL-1β production. NF-κB activation inhibitor and SN50 peptide inhibitor, however, failed to affect PMA-induced IL-1β production. A similar role of IRAK1 in IL-1β production and its regulation by PKCδ was evident in the primary human monocytes, thus signifying the importance of our finding. To our knowledge, the results obtained demonstrate for the first time that IRAK1 and PKCδ functionally interact to regulate IL-1β production in monocytic cells. A novel mechanism of IL-1β production that involves TLR2, CD11b, and the PKCδ/IRAK1/JNK/AP-1 axis is thus being proposed.  相似文献   
32.
Neutrophils expel extracellular traps (NETs) to entrap and exterminate the invaded micro-organisms. Acute/chronic inflammatory disorders are often observed with aberrantly enhanced NETs formation and high nitric oxide (NO) availability. Recent study from this laboratory demonstrated release of NETs from human neutrophils following treatment with SNP or SNAP. This study is an extension of our previous finding to explore the extracellular bacterial killing, source of DNA in the expelled NETs, their ability to induce proinflammatory cytokines release from platelets/THP-1 cells, and assessment of NO-mediated free radical formation by using a consistent NO donor, DETA-NONOate. NO-mediated NETs exhibited extracellular bacterial killing as determined by colony forming units. NO-mediated NETs formation was due to the activation of NADPH oxidase and myeloperoxidase. NO- or PMA-mediated NETs were positive for both nuclear and mitochondrial DNA as well as proteolytic enzymes. Incubation of NETs with human platelets enhanced the release of IL-1β and IL-8, while with THP-1 cells, release of IL-1β, IL-8, and TNFα was observed. This study demonstrates that NO by augmenting enzymatic free radical generation release NETs to promote extracellular bacterial killing. These NETs were made up of mitochondrial and nuclear DNA and potentiated release of proinflammatory cytokines.  相似文献   
33.
34.
The structural and electronic properties of 4′-epiadriamycin, adriamycin, and daunomycin have been studied using density functional theory (DFT) employing B3LYP exchange correlation. The chemical shifts of 1H and 13C resonances in nuclear magnetic resonance spectra have been calculated using Gauge-Invariant Atomic Orbital (GIAO) method as implemented in Gaussian 98 and compared with experimental spectra recorded at 500 MHz. 13C resonances of drugs have been assigned for the first time. A restrained molecular dynamics approach was used to get the optimized solution structure of drugs using inter-proton distance constraints obtained from 2D NOESY spectra. The glycosidic angle C7-O7-C1′-C2′ is found to show considerable flexibility by adopting 156°-161° (I), 142°-143° (II), and 38°-78° (III) conformations, of which the biological relevant structure appears to be the conformer II. The observed different conformations of the three drugs are correlated to the differential anticancer activity and the available biochemical evidence exhibited by these drugs.  相似文献   
35.
The 5' d-TpG 3' element is a part of DNA sequences involved in regulation of gene expression and is also a site for intercalation of several anticancer drugs. Solution conformation of DNA duplex d-TGATCA containing this element has been investigated by two-dimensional NMR spectroscopy. Using a total of 12 torsional angles and 121 distance constraints, structural refinement has been carried out by restrained molecular dynamics (rMDs) in vacuum up to 100 ps. The structure is characterized by a large positive roll at TpG/CpA base pair step and large negative propeller twist for AT and TA base pairs. The backbone torsional angle, gamma(O5'-C5'-C4'-C3'), of T1 residue adopts a trans-conformation which is corroborated by short intra nucleotide T1H6-T1H5' (3.7A) distance in nuclear overhauser effect spectroscopy (NOESY) spectra while the backbone torsional angle, beta(P-O5'-C5'-C4'), exists in trans as well as gauche state for T1 and C5 residues. There is evidence of significant flexibility of the sugar-phosphate backbone with rapid inter-conversion between two different conformers at TpG/CpA base pair step. The base sequence dependent variations and local structural heterogeneity have important implications in specific recognition of DNA by ligands.  相似文献   
36.
Mitoxantrone is a promising antitumor drug having considerably reduced cardiotoxicity as compared to anthracyclines. Its binding to deoxyhexanucleotides sequence d-(ATCGAT)2 has been studied by proton and phosphorous-31 nuclear magnetic resonance spectroscopy. The stoichiometry reveals that 1:1 and 2:1 mitoxantrone-d(ATCGAT)2 complexes are formed in solution. Significant upfield shifts in 6H/7H, 2H/3H, 11NH, and 12NH protons (~.5?ppm) of mitoxantrone and T6NH imino protons (~.3?ppm) are observed. The phosphorous resonances do not shift significantly indicating that the base pairs do not open at any nucleotide step along the sequence of hexamer. Several inter-molecular Nuclear Overhauser Enhancement connectivities between mitoxantrone and hexanucleotide protons indicate that mitoxantrone chromophore stacks with terminal A1-T6 base pair and side chains involving 12CH2, 12NH, and 14OH protons are in close proximity of A1, T2, A5, and T6 bases. Absorption and emission spectra show red shift in wavelength maxima, which is characteristic of stacking interaction. At higher mitoxantrone to nucleic acid ratios, electrostatic interactions are dominant. The 2:1 drug/DNA stoichiometric structure obtained by restrained Molecular Dynamics simulations shows considerable distortions in backbone torsional angles and helicoidal parameters although structural fluctuations in 25?ps analysis of trajectory are found to be negligible. Mitoxantrone binds as a monomer at either or both ends of hexamer externally with side chains interacting specifically with DNA. The findings are relevant to the understanding of pharmacological action of drug.  相似文献   
37.
38.
This study examined the role of interleukin (IL)-1 receptor-associated kinase (IRAK) and protein kinase C (PKC) in oxidized LDL (Ox-LDL)-induced monocyte IL-1β production. In THP1 cells, Ox-LDL induced time-dependent secretory IL-1β and IRAK1 activity; IRAK4, IRAK3, and CD36 protein expression; PKCδ-JNK1 phosphorylation; and AP-1 activation. IRAK1/4 siRNA and inhibitor (INH)-attenuated Ox-LDL induced secreted IL-1β and pro-IL-1β mRNA and pro-IL-1β and mature IL-1β protein expression, respectively. Diphenyleneiodonium chloride (NADPH oxidase INH) and N-acetylcysteine (free radical scavenger) attenuated Ox-LDL-induced reactive oxygen species generation, caspase-1 activity, and pro-IL-1β and mature IL-1β expression. Ox-LDL-induced secretory IL-1β production was abrogated in the presence of JNK INH II, Tanshinone IIa, Ro-31-8220, Go6976, Rottlerin, and PKCδ siRNA. PKCδ siRNA attenuated the Ox-LDL-induced increase in IRAK1 kinase activity, JNK1 phosphorylation, and AP-1 activation. In THP1 macrophages, CD36, toll-like receptor (TLR)2, TLR4, TLR6, and PKCδ siRNA prevented Ox-LDL-induced PKCδ and IRAK1 activation and IL-1β production. Enhanced Ox-LDL and IL-1β in systemic inflammatory response syndrome (SIRS) patient plasma demonstrated positive correlation with each other and with disease severity scores. Ox-LDL-containing plasma induced PKCδ and IRAK1 phosphorylation and IL-1β production in a CD36-, TLR2-, TLR4-, and TLR6-dependent manner in primary human monocytes. Results suggest involvement of CD36, TLR2, TLR4, TLR6, and the PKCδ-IRAK1-JNK1-AP-1 axis in Ox-LDL-induced IL-1β production.  相似文献   
39.
40.
The binding of oligopeptides Lys-Trp-Gly-Lys OtBu, Lys-Gly-Trp-Lys OtBu and Lys-Trp-Lys to Polyadenylic, Polycytidylic and Polyuridylic acid has been studied by Proton NMR at 90 MHz and 500 MHz at oligopeptide/Polynucleotide ratios ranging from 0.01 to 0.20 at 275-365 K. Downfield shift of 0.01-0.2 ppm at 296 K of the H2, H8 and H1' resonances of Poly A due to binding with oligopeptides is accompanied by a marked narrowing of resonance lines of Poly A. The ring protons of tryptophan shift upfield by 0.3-0.6 ppm at 296 K on binding to Poly A. Changes in chemical shift of both adenine and tryptophan protons on binding are much smaller at 355 K than that at 275 K. These observations are ascribed to intercalation of the tryptophan ring in the adenine bases resulting in partial destacking of adenine bases in Poly A. Using the magnetic anisotropy ring current shifts, an overlap geometry of tryptophan ring in the adenine has been proposed. Addition of oligopeptides to Poly C and Poly U, on the other hand, suggests that tryptophan ring does not stack in Poly U and Poly C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号