首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   426篇
  免费   71篇
  497篇
  2021年   7篇
  2020年   8篇
  2019年   5篇
  2018年   9篇
  2017年   5篇
  2016年   7篇
  2015年   20篇
  2014年   10篇
  2013年   20篇
  2012年   18篇
  2011年   17篇
  2010年   12篇
  2009年   12篇
  2008年   11篇
  2007年   13篇
  2006年   10篇
  2005年   14篇
  2004年   18篇
  2003年   17篇
  2002年   12篇
  2001年   18篇
  2000年   5篇
  1999年   14篇
  1996年   5篇
  1993年   4篇
  1992年   7篇
  1991年   7篇
  1990年   10篇
  1989年   9篇
  1988年   4篇
  1987年   8篇
  1986年   7篇
  1985年   10篇
  1983年   8篇
  1982年   4篇
  1981年   4篇
  1980年   4篇
  1979年   9篇
  1978年   6篇
  1977年   5篇
  1976年   5篇
  1975年   6篇
  1974年   4篇
  1973年   6篇
  1972年   9篇
  1971年   4篇
  1970年   4篇
  1969年   4篇
  1958年   3篇
  1950年   4篇
排序方式: 共有497条查询结果,搜索用时 15 毫秒
41.
Glycogen, a branched polymer of glucose, serves as an energy reserve in many organisms. The degree of branching likely reflects the balance between the activities of glycogen synthase and branching enzyme. Mice overexpressing constitutively active glycogen synthase in skeletal muscle (GSL30) have elevated muscle glycogen. To test whether excess glycogen synthase activity affected glycogen branching, we examined the glycogen from skeletal muscle of GSL30 mice. The absorption spectrum of muscle glycogen determined in the presence of iodine was shifted to higher wavelengths in the GSL30 animals, consistent with a decrease in the degree of branching. As judged by Western blotting, the levels of glycogenin and the branching enzyme were also elevated. Branching enzyme activity also increased approximately threefold. However, this compared with an increase in glycogen synthase of some 50-fold, so that the increase in branching enzyme in response to overexpression of glycogen synthase was insufficient to synthesize normally branched glycogen.  相似文献   
42.
A large colony of laboratory zebrafish (Brachydanio rerio) used in the study of early vertebrate embryogenesis began experiencing acute, unexplained mortality that approached 100% among approximately 30-day-old resident fry. The initial differential diagnosis included ammonia, nitrite, or chlorine toxicosis, as well as iatrogenically induced toxicosis associated with improper sanitation procedures of laboratory equipment. Necropsy of dead and moribund fry prior to fixation revealed swarms of ovoid-shaped, motile, ciliated protozoa with a "spiraling football" motion. Wet mount preparations of various water samples also contained high numbers of similar protozoa. Histologic examination of affected fry revealed numerous, periodic acid-Schiff-positive forms within the body coelom, and epithelial and muscle tissues. The protozoa were consistent morphologically with members of the genus Tetrahymena, which is usually a free-living, nonpathogenic ciliated protozoa in fresh and saltwater environments. Relevant disease associated with Tetrahymena spp. in viviparous fish has been reported as a result of concurrent disease, immunosuppression, or poor water quality conditions. To the authors' knowledge, this is the first report of an epizootic involving laboratory maintained zebrafish, and the diagnostic course and therapeutic interventions undertaken to alleviate Tetrahymena species-associated clinical disease.  相似文献   
43.
Xeroderma pigmentosum variant (XPV) cells lack the damage-specific polymerase eta and undergo a protracted arrest at the S phase checkpoint(s) following UV damage. The S phase checkpoints encompass several qualitatively different processes, and stimulate downstream events that are dependent on the functional state of p53. Primary fibroblasts with wild-type p53 arrest in S, and require a functional polymerase eta (pol eta) to carry out bypass replication, but do not recruit recombination factors for recovery. XPV cells with non-functional p53, as a result of transformation by SV40 or HPV16 (E6/E7), recruit the hMre11/hRad50/Nbs1 complex to arrested replication forks, coincident with PCNA, whereas normal transformed cells preferentially use the pol eta bypass replication pathway. The formation of hMre11 foci implies that arrested replication forks rapidly undergo a collapse involving double strand breakage and rejoining. Apoptosis occurs after UV only in cells transformed by SV40, and not in normal or XPV fibroblasts or HPV16 (E6/E7) transformed cells. Conversely, ultimate cell survival in XPV cells was much less in HPV16 (E6/E7) transformed cells than in SV40 transformed cells, indicating that apoptosis was not a reliable predictor of cell survival. Inhibition of p53 transactivation by pifithrin-alpha or inhibition of protein synthesis by cycloheximide did not induce hMre11 foci or apoptosis in UV damaged fibroblasts. Inhibition of kinase activity with wortmannin did not increase killing by UV, unlike the large increase seen with caffeine. Since HPV16 (E6/E7) transformed XPV cells were highly UV sensitive and not further sensitized by caffeine, it appears likely that caffeine sensitization proceeds through a p53 pathway. The S phase checkpoints are therefore, a complex set of different checkpoints that are coordinated by p53 with the capacity to differentially modulate cell survival, apoptosis, bypass replication and hMre11 recombination.  相似文献   
44.
Hepatitis C virus (HCV) encodes a polyprotein consisting of core, envelope (E1, E2, p7), and nonstructural polypeptides (NS2, NS3, NS4A, NS4B, NS5A, NS5B). The serine protease (NS3/NS4A), helicase (NS3), and polymerase (NS5B) constitute valid targets for antiviral therapy. We engineered BH3 interacting domain death agonist (BID), an apoptosis-inducing molecule, to contain a specific cleavage site recognized by the NS3/NS4A protease. Cleavage of the BID precursor molecule by the viral protease activated downstream apoptotic molecules of the mitochondrial pathway and triggered cell death. We extended this concept to cells transfected with an infectious HCV genome, hepatocytes containing HCV replicons, a Sindbis virus model for HCV, and finally HCV-infected mice with chimeric human livers. Infected mice injected with an adenovirus vector expressing modified BID exhibited HCV-dependent apoptosis in the human liver xenograft and considerable declines in serum HCV titers.  相似文献   
45.
46.
47.
48.
The bacterium Treponema pallidum is known to cause syphilis (ssp. pallidum), yaws (ssp. pertenue), and endemic syphilis (ssp. endemicum) in humans. Nonhuman primates have also been reported to be infected with the bacterium with equally versatile clinical manifestations, from severe skin ulcerations to asymptomatic. At present all simian strains are closely related to human yaws-causing strains, an important consideration for yaws eradication. We tested clinically healthy Guinea baboons (Papio papio) at Parc National Niokolo Koba in south eastern Senegal for the presence of anti-T. pallidum antibodies. Since T. pallidum infection in this species was identified 50 years ago, and there has been no attempt to treat non-human primates for infection, it was hypothesized that a large number of West African baboons are still infected with simian strains of the yaws-bacterium. All animals were without clinical signs of treponematoses, but 18 of 20 (90%) baboons tested positive for antibodies against T. pallidum based on treponemal tests. Yet, Guinea baboons seem to develop no clinical symptoms, though it must be assumed that infection is chronic or comparable to the latent stage in human yaws infection. The non-active character is supported by the low anti-T. pallidum serum titers in Guinea baboons (median = 1:2,560) versus serum titers that are found in genital-ulcerated olive baboons with active infection in Tanzania (range of medians among the groups of initial, moderate, and severe infected animals = 1:15,360 to 1:2.097e+7). Our findings provide evidence for simian infection with T. pallidum in wild Senegalese baboons. Potentially, Guinea baboons in West Africa serve as a natural reservoir for human infection, as the West African simian strain has been shown to cause sustainable yaws infection when inoculated into humans. The present study pinpoints an area where further research is needed to support the currently on-going second WHO led yaws eradication campaign with its goal to eradicate yaws by 2020.  相似文献   
49.
The fate of tropical forests under future climate change is dependent on the capacity of their trees to adjust to drier conditions. The capacity of trees to withstand drought is likely to be determined by traits associated with their hydraulic systems. However, data on whether tropical trees can adjust hydraulic traits when experiencing drought remain rare. We measured plant hydraulic traits (e.g. hydraulic conductivity and embolism resistance) and plant hydraulic system status (e.g. leaf water potential, native embolism and safety margin) on >150 trees from 12 genera (36 species) and spanning a stem size range from 14 to 68 cm diameter at breast height at the world's only long‐running tropical forest drought experiment. Hydraulic traits showed no adjustment following 15 years of experimentally imposed moisture deficit. This failure to adjust resulted in these drought‐stressed trees experiencing significantly lower leaf water potentials, and higher, but variable, levels of native embolism in the branches. This result suggests that hydraulic damage caused by elevated levels of embolism is likely to be one of the key drivers of drought‐induced mortality following long‐term soil moisture deficit. We demonstrate that some hydraulic traits changed with tree size, however, the direction and magnitude of the change was controlled by taxonomic identity. Our results suggest that Amazonian trees, both small and large, have limited capacity to acclimate their hydraulic systems to future droughts, potentially making them more at risk of drought‐induced mortality.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号