首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   4篇
  2016年   3篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   7篇
  2011年   5篇
  2010年   2篇
  2009年   2篇
  2008年   5篇
  2007年   6篇
  2006年   3篇
  2005年   2篇
  2004年   3篇
  2002年   7篇
  2001年   2篇
  2000年   3篇
  1999年   4篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1994年   2篇
  1993年   2篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1977年   1篇
  1974年   2篇
  1973年   1篇
排序方式: 共有98条查询结果,搜索用时 15 毫秒
71.
Lyme disease, caused by the spirochete Borrelia burgdorferi, is the most common vector-borne illness in the USA. Although early infection can be treated with antibiotics, the initial diagnosis is difficult and late disease may be recalcitrant to therapy. A vaccine against Lyme disease is therefore needed, and murine models of Lyme borreliosis have facilitated its development. In this review, Erol Fikrig, Fred Kantor, Stephen Barthold and Richard Flavell focus on the use of Borrelia surface antigens as vaccine candidates for Lyme disease.  相似文献   
72.
Because of an association of human neuroborreliosis with the development of an antibody response against an antigen in neural tissue that cross-reacts with an epitope on the flagellin protein of Borrelia burgdorferi, C3H transgenic mice were created that expressed the flagellin epitope (amino acids 213–224) as a fusion protein with myelin basic protein. The transgenic mice expressed the flagellin epitope selectively in myelinated regions of the nervous system. Both transgenic and non-transgenic mice developed an antibody response to the flagellin epitope during B. burgdorferi infection and both developed arthritis and carditis. However, no lesions were found in the central nervous system of either type of mouse for up to 8 weeks after infection. The data indicate that expression of the flagellin 213–24 epitope in mice does not result in neurologic disease, suggesting that B. burgdorferi flagellin antibodies may not be directly implicated in neuroborreliosis.  相似文献   
73.

Background  

Statistical methods for identifying positively selected sites in protein coding regions are one of the most commonly used tools in evolutionary bioinformatics. However, they have been limited by not taking the physiochemical properties of amino acids into account.  相似文献   
74.
Lymphadenopathy is a hallmark of acute infection with Borrelia burgdorferi, a tick-borne spirochete and causative agent of Lyme borreliosis, but the underlying causes and the functional consequences of this lymph node enlargement have not been revealed. The present study demonstrates that extracellular, live spirochetes accumulate in the cortical areas of lymph nodes following infection of mice with either host-adapted, or tick-borne B. burgdorferi and that they, but not inactivated spirochetes, drive the lymphadenopathy. The ensuing lymph node response is characterized by strong, rapid extrafollicular B cell proliferation and differentiation to plasma cells, as assessed by immunohistochemistry, flow cytometry and ELISPOT analysis, while germinal center reactions were not consistently observed. The extrafollicular nature of this B cell response and its strongly IgM-skewed isotype profile bear the hallmarks of a T-independent response. The induced B cell response does appear, however, to be largely antigen-specific. Use of a cocktail of recombinant, in vivo-expressed B. burgdorferi-antigens revealed the robust induction of borrelia-specific antibody-secreting cells by ELISPOT. Furthermore, nearly a quarter of hybridomas generated from regional lymph nodes during acute infection showed reactivity against a small number of recombinant Borrelia-antigens. Finally, neither the quality nor the magnitude of the B cell responses was altered in mice lacking the Toll-like receptor adaptor molecule MyD88. Together, these findings suggest a novel evasion strategy for B. burgdorferi: subversion of the quality of a strongly induced, potentially protective borrelia-specific antibody response via B. burdorferi's accumulation in lymph nodes.  相似文献   
75.
B cell responses modulate disease during infection with Borrelia burgdorferi, the causative agent of Lyme disease, but are unable to clear the infection. Previous studies have demonstrated that B. burgdorferi infection induces predominantly T-independent B cell responses, potentially explaining some of these findings. However, others have shown effects of T cells on the isotype profile and the magnitude of the B. burgdorferi-specific Abs. This study aimed to further investigate the humoral response to B. burgdorferi and its degree of T cell dependence, with the ultimate goal of elucidating the mechanisms underlying the failure of effective immunity to this emerging infectious disease agent. Our study identifies distinct stages in the B cell response using a mouse model, all marked by the generation of unusually strong and persistent T-dependent and T-independent IgM Abs. The initial phase is dominated by a strong T-independent accumulation of B cells in lymph nodes and the induction of specific Abs in the absence of germinal centers. A second phase begins around week 2.5 to 3, in which relatively short-lived germinal centers develop in lymph nodes, despite a lymph node architecture that lacks clearly demarcated T and B cell zones. This response failed, however, to generate appreciable numbers of long-lived bone marrow plasma cells. Finally, there is a slow accumulation of long-lived Ab-secreting plasma cells in bone marrow, reflected by a strong but ultimately ineffective serum Ab response. Overall, the study indicates that B. burgdorferi might evade B cell immunity by interfering with its response kinetics and quality.  相似文献   
76.
Autologous disc cell implantation, growth factors and gene therapy appear to be promising therapies for disc regeneration. Unfortunately, the replicative lifespan and growth kinetics of human nucleus pulposus (NP) cells related to host age are unclear. We investigated the potential relations among age, replicative lifespan and growth rate of NP cells, and determined the age range that is suitable for cell-based biological therapies for degenerative disc diseases. We used NP tissues classified by decade into five age groups: 30s, 40s, 50s, 60s and 70s. The mean cumulative population doubling level (PDL) and population doubling rate (PDR) of NP cells were assessed by decade. We also investigated correlations between cumulative PDL and age, and between PDR and age. The mean cumulative PDL and PDR decreased significantly in patients in their 60s. The mean cumulative PDL and PDR in the younger groups (30s, 40s and 50s) were significantly higher than those in the older groups (60s and 70s). There also were significant negative correlations between cumulative PDL and age, and between PDR and age. We found that the replicative lifespan and growth rate of human NP cells decreased with age. The replicative potential of NP cells decreased significantly in patients 60 years old and older. Young individuals less than 60 years old may be suitable candidates for NP cell-based biological therapies for treating degenerative disc diseases.  相似文献   
77.
Estimates of age‐specific mortality are regularly used in ecology, evolution, and conservation research. However, estimating mortality of the dispersing sex, in species where one sex undergoes natal dispersal, is difficult. This is because it is often unclear whether members of the dispersing sex that disappear from monitored areas have died or dispersed. Here, we develop an extension of a multievent model that imputes dispersal state (i.e., died or dispersed) for uncertain records of the dispersing sex as a latent state and estimates age‐specific mortality and dispersal parameters in a Bayesian hierarchical framework. To check the performance of our model, we first conduct a simulation study. We then apply our model to a long‐term data set of African lions. Using these data, we further study how well our model estimates mortality of the dispersing sex by incrementally reducing the level of uncertainty in the records of male lions. We achieve this by taking advantage of an expert's indication on the likely fate of each missing male (i.e., likely died or dispersed). We find that our model produces accurate mortality estimates for simulated data of varying sample sizes and proportions of uncertain male records. From the empirical study, we learned that our model provides similar mortality estimates for different levels of uncertainty in records. However, a sensitivity of the mortality estimates to varying uncertainty is, as can be expected, detectable. We conclude that our model provides a solution to the challenge of estimating mortality of the dispersing sex in species with data deficiency due to natal dispersal. Given the utility of sex‐specific mortality estimates in biological and conservation research, and the virtual ubiquity of sex‐biased dispersal, our model will be useful to a wide variety of applications.  相似文献   
78.
In some primate species, pelage colorations at birth contrast with adult colorations. The intensity of natal coats and their phylogenetic distribution is highly variable within primates. Natal coat coloration seems to change to adult coloration in most species when infants become independent from their mothers, but an accepted functional explanation for natal coats is not available. Here we describe pelage coloration change in sexually dichromatic redfronted lemurs (Eulemur fulvus rufus) in Kirindy Forest, and propose a new functional hypothesis for this phenomenon. In this species, infants are born with adult male coloration and female infants subsequently undergo a change in coloration. Using digital pictures and behavioral data collected on eight mother-offspring dyads from birth until the end of the coloration change, we 1) described timing and pattern of pelage developmentin redfronted lemur infants and 2) examined behavioral developmental correlates of the coloration change. The color change took place between 7 and 17 weeks of age and coincided with advanced physical independence; a pattern also found in monochromatic primate species with natal coats. No behavioral differences between male and female infants were found. Hypotheses about the ultimate function of natal coats focusing on enhanced infant care or reduced infanticide risk did not explain the pelage change in redfronted lemurs. The natal pelage pattern in this species may instead serve as sexual mimicry. Accordingly, female infants may mimic males during the most vulnerable developmental phase to avoid sex-specific aggression by adult females in a species with intense female-female aggression and competition.  相似文献   
79.
In the cottontail rabbit papillomavirus (CRPV)-rabbit system, recombinant CRPV DNA can induce papillomas. This investigation was undertaken to evaluate whether the E5 open reading frame (ORF) of CRPV is required for papilloma formation. The CRPV genome we utilized, CRPV-WA, was sequenced in the E5 region and was found to contain one deletion, two insertions, and one transition mutation compared with CRPV-KS, the CRPV genome that has been fully sequenced. Despite these differences, an intact E5 ORF is preserved, supporting the notion that this gene may serve a biological function. One frameshift and two in-frame mutations were constructed in the small region of the 5' end of the E5 ORF that follows the E2 stop codon and precedes the L2 ORF. Several hundred rabbit skin sites were inoculated with each DNA preparation with a jet injector to test the ability of three CRPV E5 mutant DNAs to induce papillomas. In vivo results showed that each of the mutants induced papillomas, and biochemical analysis demonstrated that the E5 mutations present in DNA inocula were retained in the papillomas. The frequency of papilloma formation, however, was generally lower with each of the CRPV E5 mutants than with wild-type CRPV DNA, particularly so for the E5 frameshift mutant, suggesting that although the recognized E5 ORF is not required in domestic rabbits for the induction of papillomas by CRPV DNA, it may facilitate their formation.  相似文献   
80.
Bartonella henselae P26 has been identified as an immunodominant antigen expressed during feline infection. We used antisera from cats experimentally infected with B. henselae (n = 6), B. clarridgeiae (n = 4), or B. koehlerae (n = 2) and from a sample of naturally infected cats (B. henselae, n = 34; B. clarridgeiae, n = 1) to evaluate recombinant P26 (rP26) as a serodiagnostic antigen. Immunoblots using antisera from cats infected with B. henselae and B. clarridgeiae reacted strongly with rP26, whereas B. koehlerae antisera did not. A capture ELISA was designed to evaluate the kinetics of rP26 IgG in sera from experimentally infected cats. For B. henselae and B. clarridgeiae antisera, the kinetic profiles of reactivity were similar for rP26 capture ELISA and Bartonella spp. indirect fluorescence assay. However, for B. koehlerae antisera, reactivity in rP26 capture ELISA was consistently low. The serodiagnostic potential of rP26 capture ELISA was evaluated using sera from cats with known Bartonella sp. exposure histories. All 24 (100%) uninfected cats were seronegative, and 33 of 35 (94.3%) cats bacteremic for Bartonella spp. were seropositive. We propose that rP26-based serology can serve as a useful adjunct tool for the diagnosis of feline infection with B. henselae and B. clarridgeiae, but it may not be useful for feline infection with B. koehlerae.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号