首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   46篇
  2023年   2篇
  2021年   2篇
  2019年   3篇
  2018年   2篇
  2017年   5篇
  2016年   6篇
  2015年   9篇
  2014年   10篇
  2013年   4篇
  2012年   7篇
  2011年   10篇
  2010年   8篇
  2009年   6篇
  2008年   10篇
  2007年   5篇
  2005年   4篇
  2002年   6篇
  2001年   5篇
  1999年   2篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1994年   4篇
  1993年   3篇
  1992年   4篇
  1991年   3篇
  1990年   4篇
  1989年   4篇
  1988年   7篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   10篇
  1978年   2篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1972年   7篇
  1970年   1篇
  1969年   8篇
  1967年   1篇
  1966年   2篇
  1962年   1篇
  1948年   1篇
排序方式: 共有209条查询结果,搜索用时 15 毫秒
71.
Metabolism of acetylene by Nocardia rhodochrous.   总被引:1,自引:0,他引:1       下载免费PDF全文
A Nocardia rhodochrous strain capable of utilizing acetylene as its sole source of carbon and energy exhibited slow growth on low concentrations of acetaldehyde. Resting cells incubated with acetylene formed a product identified as acetaldehyde, but attempts to demonstrate acetylene hydrase activity in cell-free extracts were unsuccessful. Acetaldehyde dehydrogenase in N. rhodochrous was found to be NAD+ linked and nonacylating, converting acetaldehyde to acetate. Specific activities of acetaldehyde dehydrogenase, acetothiokinase, and isocitrate lyase were enhanced in cells grown on acetylene and ethanol as compared with cells grown on alternate substrates. These results suggest that acetylene is catabolized via acetaldehyde to acetate and eventually to acetyl coenzyme A. Acetylene oxidation in N. rhodochrous appears to be constitutive and is not inhibited in the presence of either ethylene, nitrous oxide, or methane.  相似文献   
72.
Small cell lung cancer (SCLC) cell lines produce and secrete various peptide hormones, e.g. bombesin (BN)/gastrin releasing peptide (GRP) like peptides that are proposed to function as their autocrine growth factors. To inhibit the proliferative effect of these hormones we have synthesized short chain BN[7-14]-analogues replacing the C-terminal peptide bond by a methylene-amino (-CH2NH-) unit and introducing d -Phe or d -Ser into position 12. As several substance P (SP) analogues were found to inhibit the growth of SCLC cells, some short chain SP-analogues have been synthesized. (Pseudo)octapeptides were synthesized in solution, by fragment condensation using the DCC/HOPfp method. Fragments and SP-analogues were synthesized stepwise using pentafluorophenyl esters. The resistance to hydrolysis of the reduced peptide bond made permitted exact quantification of the Leuψ(CH2NH)Leu pseudopeptide in hydrolysates. The binding ability of both types of peptides to BN-receptors on Swiss 3T3 mouse fibroblast cells and their antiproliferative effect on NCI-H69 human SCLC cell line have been tested and compared with a short chain SP-antagonist pHOPA-d -Trp-Phe-d -Trp-Leu-Leu-NH2 ( R ) previously described as a potent inhibitor of SCLC proliferation. While BN-analogues showed weak activity in inhibition of proliferation of SCLC cells, SP-analogues 6 : d -MePhe-d-T rp-Phe-d -Trp-Leuψ(CH2NH)-Leu-NH2 and 7 : d -MePhe-d -Trp-Phe-d -Trp-Leu-MPA, in spite of greatly diminished affinity towards the BN-receptor, inhibited SCLC proliferation more effectively than R ( 6 : IC50=2 μm , 7 : IC50=5 μm and R : IC50=10 μm ). Moreover, 6 inhibited the respiratory activity of SK-MES 1 epithelial type of lung carcinoma cells in proliferating but not in the quiescent state, suggesting that the antiproliferative effect of these compounds is not due to simple cytotoxicity. These short chain analogues of SP might be promising candidates as therapeutic agents in the treatment of SCLC. © 1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
73.
We reported previously that the nitric oxide synthesis inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) decreases cardiac output. Several studies have shown that inhibition of nitric oxide synthesis decreases the heart rate. In the present study, we investigated the effect of a single bolus administration of L-NAME on blood pressure and heart rate monitored for one hour in anesthetized rats and the influence of vagotomy and beta1-receptor blocker metoprolol on the L-NAME induced bradycardia. After L-NAME treatment, the blood pressure rose immediately after the injection of the drug (peak response in the third minute: +24%, p<0.001) and fell to the control level in the 20th minute. The heart rate decreased immediately after L-NAME administration, the lowest value being reached in the 10th minute (-14%, p<0.001). However, bradycardia was sustained even after the blood pressure had returned to the control level. Bilateral vagotomy failed to influence the negative chronotropic effect of L-NAME, but bradycardia was completely abolished by metoprolol pretreatment. We concluded that the bradycardia evoked by L-NAME is mainly due to the withdrawal of sympathetic tone upon the heart rate. However, the cause of sustained bradycardia after normalization of blood pressure cannot be elucidated.  相似文献   
74.
Protease-activated receptors (PARs) mediate cell activation after proteolytic cleavage of their extracellular amino terminus. We have reported earlier that primary cultures of rat brain capillary endothelial (RBCE) cells express at least two receptors for thrombin: PAR-1 and PAR-3. In the present study we show that PAR-2 activation by trypsin or by the PAR-2 agonist peptide (SLIGRL) evokes [Ca(2+) ](i) signal in RBCE cells. Taking advantage of RBCE cells expressing PAR-1 and PAR-2, we show that trypsin activates both receptors. The relative agonist activity of trypsin and thrombin on PARs of RBCE cells compared with that of SLIGRL were 112% and 48%, respectively, whereas the potency of trypsin was 10(5) -fold higher than that of SLIGRL. Because under pathological conditions other proteases such as plasmin or leukocyte elastase may reach the cells of the blood-brain barrier, we investigated the effect of these proteases on RBCE cells. Elastase evoked a small increase in [Ca(2+) ](i) but preincubation of cells with elastase dose-dependently reduced the trypsin-induced [Ca(2+) ](i) signal. Plasmin had a 30% inhibitory effect on the trypsin-induced response, and reduced the SLIGRL signal by 20%. It is concluded that PAR-2 is functional in brain capillary endothelium, and that the main fibrinolytic proteases, plasmin and elastase, may regulate PAR-2 signalling under pathological conditions.  相似文献   
75.
Vaccinomics is the convergence of vaccinology and population-based omics sciences. The success of knowledge-based innovations such as vaccinomics is not only contingent on access to new biotechnologies. It also requires new ways of governance of science, knowledge production, and management. This article presents a conceptual analysis of the anticipatory and adaptive approaches that are crucial for the responsible design and sustainable transition of vaccinomics to public health practice. Anticipatory governance is a new approach to manage the uncertainties embedded on an innovation trajectory with participatory foresight, in order to devise governance instruments for collective "steering" of science and technology. As a contrast to hitherto narrowly framed "downstream impact assessments" for emerging technologies, anticipatory governance adopts a broader and interventionist approach that recognizes the social construction of technology design and innovation. It includes in its process explicit mechanisms to understand the factors upstream to the innovation trajectory such as deliberation and cocultivation of the aims, motives, funding, design, and direction of science and technology, both by experts and publics. This upstream shift from a consumer "product uptake" focus to "participatory technology design" on the innovation trajectory is an appropriately radical and necessary departure in the field of technology assessment, especially given that considerable public funds are dedicated to innovations. Recent examples of demands by research funding agencies to anticipate the broad impacts of proposed research--at a very upstream stage at the time of research funding application--suggest that anticipatory governance with foresight may be one way how postgenomics scientific practice might transform in the future toward responsible innovation. Moreover, the present context of knowledge production in vaccinomics is such that policy making for vaccines of the 21st century is occurring in the face of uncertainties where the "facts are uncertain, values in dispute, stakes high and decisions urgent and where no single one of these dimensions can be managed in isolation from the rest." This article concludes, however, that uncertainty is not an accident of the scientific method, but its very substance. Anticipatory governance with participatory foresight offers a mechanism to respond to such inherent sociotechnical uncertainties in the emerging field of vaccinomics by making the coproduction of scientific knowledge by technology and the social systems explicit. Ultimately, this serves to integrate scientific and social knowledge thereby steering innovations to coproduce results and outputs that are socially robust and context sensitive.  相似文献   
76.

Background

One of the best and most accurate methods for identifying disease-causing genes is monitoring gene expression values in different samples using microarray technology. One of the shortcomings of microarray data is that they provide a small quantity of samples with respect to the number of genes. This problem reduces the classification accuracy of the methods, so gene selection is essential to improve the predictive accuracy and to identify potential marker genes for a disease. Among numerous existing methods for gene selection, support vector machine-based recursive feature elimination (SVMRFE) has become one of the leading methods, but its performance can be reduced because of the small sample size, noisy data and the fact that the method does not remove redundant genes.

Methods

We propose a novel framework for gene selection which uses the advantageous features of conventional methods and addresses their weaknesses. In fact, we have combined the Fisher method and SVMRFE to utilize the advantages of a filtering method as well as an embedded method. Furthermore, we have added a redundancy reduction stage to address the weakness of the Fisher method and SVMRFE. In addition to gene expression values, the proposed method uses Gene Ontology which is a reliable source of information on genes. The use of Gene Ontology can compensate, in part, for the limitations of microarrays, such as having a small number of samples and erroneous measurement results.

Results

The proposed method has been applied to colon, Diffuse Large B-Cell Lymphoma (DLBCL) and prostate cancer datasets. The empirical results show that our method has improved classification performance in terms of accuracy, sensitivity and specificity. In addition, the study of the molecular function of selected genes strengthened the hypothesis that these genes are involved in the process of cancer growth.

Conclusions

The proposed method addresses the weakness of conventional methods by adding a redundancy reduction stage and utilizing Gene Ontology information. It predicts marker genes for colon, DLBCL and prostate cancer with a high accuracy. The predictions made in this study can serve as a list of candidates for subsequent wet-lab verification and might help in the search for a cure for cancers.  相似文献   
77.
Empirical studies that link plants intraspecific variation to environmental conditions are almost lacking, despite their relevance in understanding mechanisms of plant adaptation, in predicting the outcome of environmental change and in conservation. Here, we investigate intraspecific trait variation of four grassland species along with abiotic environmental variation at high spatial resolution (n = 30 samples per species trait and environmental factor per site) in two contrasting grassland habitats in Central Apennines (Italy). We test for phenotypic adaptation between habitats, intraspecific trait-environment relationships within habitats, and the extent of trait and environmental variation. We considered whole plant, clonal, leaf, and seed traits. Differences between habitats were tested using ANOVA and ANCOVA. Trait-environment relationships were assessed using multiple regression models and hierarchical variance partitioning. The extent of variation was calculated using the coefficient of variation. Significant intraspecific differences in trait attributes between the contrasting habitats indicate phenotypic adaptation to in situ environmental conditions. Within habitats, light, soil temperature, and the availability of nitrate, ammonium, magnesium and potassium were the most important factors driving intraspecific trait-environment relationships. Leaf traits and height growth show lower variability than environment being probably more regulated by plants than clonal traits which show much higher variability. We show the adaptive significance of key plant traits leading to intraspecific adaptation of strategies providing insights for conservation of extant grassland communities. We argue that protecting habitats with considerable medium- and small-scale environmental heterogeneity is important to maintain large intraspecific variability within local populations that finally can buffer against uncertainty of future climate and land use scenarios.  相似文献   
78.
79.
Tumors acquire sufficient oxygen and nutrient supply by coopting host vessels and neovasculature created via angiogenesis, thereby transforming a highly ordered network into chaotic heterogeneous tumor specific vasculature. Vessel regression inside the tumor leads to large regions of necrotic tissue interspersed with isolated surviving vessels. We extend our recently introduced model to incorporate Fahraeus-Lindqvist- and phase separation effects, refined tissue oxygen level computation and drug flow computations. We find, unexpectedly, that collapse and regression accelerates rather than diminishes the perfusion and that a tracer substance flowing through the remodeled network reaches all parts of the tumor vasculature very well. The reason for decreased drug delivery well known in tumors should therefore be different from collapse and vessel regression. Implications for drug delivery in real tumors are discussed.  相似文献   
80.

Background  

Brain-derived ectonucleoside triphosphate diphosphohydrolases (NTPDases) have been known as plasma membrane-incorporated enzymes with their ATP-hydrolyzing domain outside of the cell. As such, these enzymes are thought to regulate purinergic intercellular signaling by hydrolyzing ATP to ADP-AMP, thus regulating the availability of specific ligands for various P2X and P2Y purinergic receptors. The role of NTPDases in the central nervous system is little understood. The two major reasons are the insufficient knowledge of the precise localization of these enzymes in neural structures, and the lack of specific inhibitors for the various NTPDases. To fill these gaps, we recently studied the presence of neuron-specific NTPDase3 in the mitochondria of hypothalamic excitatory neurons by morphological and functional methods. Results from those studies suggested that intramitochondrial regulation of ATP levels may play a permissive role in the neural regulation of physiological functions by tuning the level of ATP-carried energy that is needed for neuronal functions, such as neurotransmission and/or intracellular signaling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号