首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   22篇
  198篇
  2022年   3篇
  2021年   2篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   3篇
  2014年   8篇
  2013年   7篇
  2012年   16篇
  2011年   9篇
  2010年   10篇
  2009年   9篇
  2008年   8篇
  2007年   13篇
  2006年   15篇
  2005年   12篇
  2004年   11篇
  2003年   13篇
  2002年   7篇
  2001年   12篇
  2000年   9篇
  1999年   5篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
排序方式: 共有198条查询结果,搜索用时 12 毫秒
61.
Leptin is a circulating pleiotropic hormone that play an important role in appetite control, fat metabolism, regulation of body weight, fetus growth, growth and aging of adults and hematopoiesis. It is expressed abundantly and specifically in the adipose tissue. A liver cell with developed steatosis represents a cell metabolism similar to metabolism of cells of adipose tissue. Analyses of serum leptin and free leptin receptor in the serum of patients with steatosis showed significant variations from reference limits of normal values. However in liver tissue with verified steatosis detection of mRNA gene for leptin was not proven. Such expression of ob gene for leptin was not found even in the liver tissue without steatosis. With respect to the absence of ob gene expression, the direct effect of ob gene expression on other parameters of leptin metabolism could not be evaluated. The RT-PCR method with verified specificity and satisfying sensitivity was developed. The results obtained from analysis of serum leptin and free leptin receptor in the serum are presented and evaluated. The used methods were verified and reference limits for Czech population were defined in dependence on age and other clinical parameters.  相似文献   
62.
Rajwa B 《Cytometry. Part A》2011,79(12):973-974
  相似文献   
63.
64.
Cyclin-dependent kinases (CDKs) are essential for regulating key transitions in the cell cycle, including initiation of DNA replication, mitosis and prevention of re-replication. Here we demonstrate that mammalian CDC6, an essential regulator of initiation of DNA replication, is phosphorylated by CDKs. CDC6 interacts specifically with the active Cyclin A/CDK2 complex in vitro and in vivo, but not with Cyclin E or Cyclin B kinase complexes. The cyclin binding domain of CDC6 was mapped to an N-terminal Cy-motif that is similar to the cyclin binding regions in p21(WAF1/SDI1) and E2F-1. The in vivo phosphorylation of CDC6 was dependent on three N-terminal CDK consensus sites, and the phosphorylation of these sites was shown to regulate the subcellular localization of CDC6. Consistent with this notion, we found that the subcellular localization of CDC6 is cell cycle regulated. In G1, CDC6 is nuclear and it relocalizes to the cytoplasm when Cyclin A/CDK2 is activated. In agreement with CDC6 phosphorylation being specifically mediated by Cyclin A/CDK2, we show that ectopic expression of Cyclin A, but not of Cyclin E, leads to rapid relocalization of CDC6 from the nucleus to the cytoplasm. Based on our data we suggest that the phosphorylation of CDC6 by Cyclin A/CDK2 is a negative regulatory event that could be implicated in preventing re-replication during S phase and G2.  相似文献   
65.
66.
Oren M  Bartek J 《Cell》2007,128(5):826-828
Skin, the largest organ of our body, is often plagued by cancer because of exposure to ultraviolet radiation from the sun. A report by Cui et al. (2007) in this issue of Cell explains how the tumor suppressor p53 protects the skin by stimulating the suntan response.  相似文献   
67.
The pyruvate dehydrogenase complex was deleted to increase precursor availability in Corynebacterium glutamicum strains overproducing l-valine. The resulting auxotrophy is treated by adding acetate in addition glucose for growth, resulting in the puzzling fact of gluconeogenic growth with strongly reduced glucose uptake in the presence of acetate in the medium. This result was proven by intracellular metabolite analysis and labelling experiments. To increase productivity, the SugR protein involved in negative regulation of the phosphotransferase system, was inactivated, resulting in enhanced consumption of glucose. However, the surplus in substrate uptake was not converted to l-valine; instead, the formation of up to 289 μM xylulose was observed for the first time in C. glutamicum. As an alternative to the genetic engineering solution, a straightforward process engineering approach is proposed. Acetate limitation resulted in a more efficient use of acetate as cosubstrate, shown by an increased biomass yield Y X/Ac and improved l-valine formation.  相似文献   
68.
69.

Background

Flow cytometry (FC)-based computer-aided diagnostics is an emerging technique utilizing modern multiparametric cytometry systems.The major difficulty in using machine-learning approaches for classification of FC data arises from limited access to a wide variety of anomalous samples for training. In consequence, any learning with an abundance of normal cases and a limited set of specific anomalous cases is biased towards the types of anomalies represented in the training set. Such models do not accurately identify anomalies, whether previously known or unknown, that may exist in future samples tested. Although one-class classifiers trained using only normal cases would avoid such a bias, robust sample characterization is critical for a generalizable model. Owing to sample heterogeneity and instrumental variability, arbitrary characterization of samples usually introduces feature noise that may lead to poor predictive performance. Herein, we present a non-parametric Bayesian algorithm called ASPIRE (anomalous sample phenotype identification with random effects) that identifies phenotypic differences across a batch of samples in the presence of random effects. Our approach involves simultaneous clustering of cellular measurements in individual samples and matching of discovered clusters across all samples in order to recover global clusters using probabilistic sampling techniques in a systematic way.

Results

We demonstrate the performance of the proposed method in identifying anomalous samples in two different FC data sets, one of which represents a set of samples including acute myeloid leukemia (AML) cases, and the other a generic 5-parameter peripheral-blood immunophenotyping. Results are evaluated in terms of the area under the receiver operating characteristics curve (AUC). ASPIRE achieved AUCs of 0.99 and 1.0 on the AML and generic blood immunophenotyping data sets, respectively.

Conclusions

These results demonstrate that anomalous samples can be identified by ASPIRE with almost perfect accuracy without a priori access to samples of anomalous subtypes in the training set. The ASPIRE approach is unique in its ability to form generalizations regarding normal and anomalous states given only very weak assumptions regarding sample characteristics and origin. Thus, ASPIRE could become highly instrumental in providing unique insights about observed biological phenomena in the absence of full information about the investigated samples.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-314) contains supplementary material, which is available to authorized users.  相似文献   
70.
53BP1 is a mediator of DNA damage response (DDR) and a tumor suppressor whose accumulation on damaged chromatin promotes DNA repair and enhances DDR signaling. Using foci formation of 53BP1 as a readout in two human cell lines, we performed an siRNA-based functional high-content microscopy screen for modulators of cellular response to ionizing radiation (IR). Here, we provide the complete results of this screen as an information resource, and validate and functionally characterize one of the identified 'hits': a nuclear pore component NUP153 as a novel factor specifically required for 53BP1 nuclear import. Using a range of cell and molecular biology approaches including live-cell imaging, we show that knockdown of NUP153 prevents 53BP1, but not several other DDR factors, from entering the nuclei in the newly forming daughter cells. This translates into decreased IR-induced 53BP1 focus formation, delayed DNA repair and impaired cell survival after IR. In addition, NUP153 depletion exacerbates DNA damage caused by replication stress. Finally, we show that the C-terminal part of NUP153 is required for effective 53BP1 nuclear import, and that 53BP1 is imported to the nucleus through the NUP153-importin-β interplay. Our data define the structure-function relationships within this emerging 53BP1-NUP153/importin-β pathway and implicate this mechanism in the maintenance of genome integrity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号