首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   22篇
  2022年   3篇
  2021年   2篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   3篇
  2014年   8篇
  2013年   7篇
  2012年   16篇
  2011年   9篇
  2010年   10篇
  2009年   9篇
  2008年   8篇
  2007年   13篇
  2006年   15篇
  2005年   12篇
  2004年   11篇
  2003年   13篇
  2002年   7篇
  2001年   12篇
  2000年   9篇
  1999年   5篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
排序方式: 共有198条查询结果,搜索用时 15 毫秒
11.
Accumulation of repair proteins on damaged chromosomes is required to restore genomic integrity. However, the mechanisms of protein retention at the most destructive chromosomal lesions, the DNA double-strand breaks (DSBs), are poorly understood. We show that RNF8, a RING-finger ubiquitin ligase, rapidly assembles at DSBs via interaction of its FHA domain with the phosphorylated adaptor protein MDC1. This is accompanied by an increase in DSB-associated ubiquitylations and followed by accumulation of 53BP1 and BRCA1 repair proteins. Knockdown of RNF8 or disruption of its FHA or RING domains impaired DSB-associated ubiquitylation and inhibited retention of 53BP1 and BRCA1 at the DSB sites. In addition, we show that RNF8 can ubiquitylate histone H2A and H2AX, and that its depletion sensitizes cells to ionizing radiation. These data suggest that MDC1-mediated and RNF8-executed histone ubiquitylation protects genome integrity by licensing the DSB-flanking chromatin to concentrate repair factors near the DNA lesions.  相似文献   
12.
13.
Maintaining genomic integrity is critical to avoid life-threatening disorders, such as premature aging, neurodegeneration and cancer. A multiprotein cascade operates at sites of DNA double-strand breaks (DSBs) to recognize, signal and repair damage. RNF168 (ring-finger nuclear factor) contributes to this emerging pathway of several E3 ubiquitin ligases that perform sequential ubiquitylations on damaged chromosomes, chromatin modifications essential for aggregation of repair complexes at the DSB sites. Here, we report the clinical and cellular phenotypes associated with a newly identified homozygous nonsense mutation in the RNF168 gene of a patient with a syndrome mimicking ataxia-telangiectasia. The mutation eliminated both of RNF168's ubiquitin-binding motifs, thus blocking progression of the ubiquitylation cascade and retention of repair proteins including tumor suppressors 53BP1 and BRCA1 at DSB sites, consistent with the observed defective DNA damage checkpoints/repair and pronounced radiosensitivity. Rapid screening for RNF168 pathway deficiency was achieved by scoring patients' lymphoblastoid cells for irradiation-induced nuclear foci containing 53BP1, a robust assay we propose for future diagnostic applications. The formation of radiation-induced DSB repair foci was rescued by ectopic expression of wild-type RNF168 in patient's cells, further causally linking the RNF168 mutation with the pathology. Clinically, this novel syndrome featured ataxia, telangiectasia, elevated alphafetoprotein, immunodeficiency, microcephaly and pulmonary failure and has implications for the differential diagnosis of autosomal recessive ataxias.  相似文献   
14.
In our studies of ovarian cancer cells we have identified subpopulations of cells that are in a transitory E/M hybrid stage, i.e. cells that simultaneously express epithelial and mesenchymal markers. E/M cells are not homogenous but, in vitro and in vivo, contain subsets that can be distinguished based on a number of phenotypic features, including the subcellular localization of E-cadherin, and the expression levels of Tie2, CD133, and CD44. A cellular subset (E/M-MP) (membrane E-cadherin(low)/cytoplasmic E-cadherin(high)/CD133(high), CD44(high), Tie2(low)) is highly enriched for tumor-forming cells and displays features which are generally associated with cancer stem cells. Our data suggest that E/M-MP cells are able to differentiate into different lineages under certain conditions, and have the capacity for self-renewal, i.e. to maintain a subset of undifferentiated E/M-MP cells during differentiation. Trans-differentiation of E/M-MP cells into mesenchymal or epithelial cells is associated with a loss of stem cell markers and tumorigenicity. In vivo xenograft tumor growth is driven by E/M-MP cells, which give rise to epithelial ovarian cancer cells. In contrast, in vitro, we found that E/M-MP cells differentiate into mesenchymal cells, in a process that involves pathways associated with an epithelial-to-mesenchymal transition. We also detected phenotypic plasticity that was dependent on external factors such as stress created by starvation or contact with either epithelial or mesenchymal cells in co-cultures. Our study provides a better understanding of the phenotypic complexity of ovarian cancer and has implications for ovarian cancer therapy.  相似文献   
15.
Human checkpoint kinase 1 (Chk1) is an essential kinase required to preserve genome stability. Here, we show that Chk1 inhibition by two distinct drugs, UCN-01 and CEP-3891, or by Chk1 small interfering RNA (siRNA) leads to phosphorylation of ATR targets. Chk1-inhibition triggered rapid, pan-nuclear phosphorylation of histone H2AX, p53, Smc1, replication protein A, and Chk1 itself in human S-phase cells. These phosphorylations were inhibited by ATR siRNA and caffeine, but they occurred independently of ATM. Chk1 inhibition also caused an increased initiation of DNA replication, which was accompanied by increased amounts of nonextractable RPA protein, formation of single-stranded DNA, and induction of DNA strand breaks. Moreover, these responses were prevented by siRNA-mediated downregulation of Cdk2 or the replication initiation protein Cdc45, or by addition of the CDK inhibitor roscovitine. We propose that Chk1 is required during normal S phase to avoid aberrantly increased initiation of DNA replication, thereby protecting against DNA breakage. These results may help explain why Chk1 is an essential kinase and should be taken into account when drugs to inhibit this kinase are considered for use in cancer treatment.  相似文献   
16.
WAY-100635 [N-(2-(1-(4-(2-methoxyphenyl)piperazinyl)ethyl))-N-(2-pyridinyl)cyclohexanecarboxamide] 1 and its O-desmethyl derivative DWAY 2 are well-known high affinity 5-HT(1A) receptor antagonists, which when labeled with carbon-11 (beta+; t(1/2) = 20.4 min) in the carbonyl group are effective radioligands for imaging brain 5-HT(1A) receptors with positron emission tomography (PET). In a search for new 5-HT(1A) antagonists with different pharmacokinetic and metabolic properties, the pyridinyl N-oxide moiety was incorporated into analogs of 1 and 2. NOWAY 3, in which the pyridinyl ring of 1 was oxidized to the pyridinyl N-oxide, was prepared via nucleophilic substitution of 2-[4-(2-methoxyphenyl)piperazin-1-yl]ethylamine on 2-chloropyridine-N-oxide followed by acylation with cyclohexanecarbonyl chloride. 6Cl-NOWAY 4, a more lipophilic (pyridinyl-6)-chloro derivative of 3, was prepared by treating 1-(2-methoxyphenyl)-4-(2-(2-(6-bromo)aminopyridinyl-N-oxide)ethyl)piperazine with cyclohexanecarbonyl chloride for acylation and concomitant chloro for bromo substitution. NEWWAY 5, in which the 2-hydroxy-phenyl group of 2 is replaced with a 2-pyridinyl N-oxide group with the intention of mimicking the topology of 2, was prepared in five steps from 2-(chloroacetylamino)pyridine. N-Oxides 3-5 were found to be high affinity antagonists at 5-HT(1A) receptors, with 3 having the highest affinity and a Ki value (0.22 nM) comparable to that of 1 (0.17 nM). By calculation the lipophilicity of 3 (LogP = 1.87) is lower than that of 1 by 1.25 LogP units while TLC and reverse phase HPLC indicate that 3 has slightly lower lipophilicity than 1. On the basis of these encouraging findings, the N-oxide 3 was selected for labeling with carbon-11 in its carbonyl group and for evaluation as a radioligand with PET. After intravenous injection of [carbonyl-11C]3 into cynomolgus monkey there was very low uptake of radioactivity into brain and no PET image of brain 5-HT(1A) receptors was obtained. Either 3 inadequately penetrates the blood-brain barrier or it is excluded from brain by an active efflux mechanism. Rapid deacylation of 3 was not apparent in vivo; in cynomolgus monkey plasma radioactive metabolites of [carbonyl-11C]3 appeared less rapidly than from the radioligands [carbonyl-11C]1 and [carbonyl-11C]2, which are known to be primarily metabolized by deacylation. Ligand 3 may have value as a new pharmacological tool, but not as a radioligand for brain imaging.  相似文献   
17.
Moderate alcohol consumption is associated with increased insulin sensitivity and a reduced risk for type 2 diabetes. An important endogenous mediator of insulin sensitivity is adiponectin (AN), an adipokine that displays numerous antiatherogenic, antidiabetogenic and antiinflammatory effects. Recently, acute increase in alcohol consumption has been shown to be associated with increase in plasma adiponectin and, concomitantly, insulin sensitivity. Whether chronic alcohol consumption predicts an increase in plasma AN and whether this is independent of adiposity, markers of liver dysfunction, and plasma adipokines such as tumor necrosis factor (TNF)-alpha is not known. We, therefore, investigated these relationships in 75 men who were diagnosed with liver steatosis using ultrasound/liver biopsy. We examined 75 men, who were diagnosed for having liver steatosis (ultrasound/liver biopsy). Each filled in a questionnaire on alcohol intake. Subjects were divided into two subgroups according to alcohol history and CDT concentrations--drinkers and non-drinkers. All individuals were examined for serum concentrations of AN, glucose, triglycerides, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and glutamate transferase (GMT) activity; carbohydrate-deficient transferrin (CDT%) a marker of chronic alcohol consumption, insulin and TNF-alpha. The Quicki insulin sensitivity index was calculated. Forty-eight individuals were found to be moderate drinkers and 27 subjects non-drinkers. Moderate drinkers had significantly higher concentrations of AN (13.8 +/- 3,7 versus 9.1 +/- 5.4 mg/l, means +/- SD, p = 0.012) compared with non-drinkers, independent of adiposity. Plasma AN concentrations in the whole group were positively correlated with TNF-alpha concentrations (r = 0.6; p = 0.0001), CDT (r = 0.26; p = 0.0084), AST/ALT index (r = 0.3, p = 0.009), AST (r = 0.29; p = 0.011) and GMT (r = 0.29; p = 0.011) and negatively with BMI (r = -0.48; p = 0.0002) and glycemia (r = -0.22; p = 0.049). The positive associations of AN with TNF-alpha (0.8; p = 0.001), CDT (0.55; p = 0.017), AST/ALT index (0.55; p = 0.019) and the negative correlation with glycemia (-0.35; p = 0.0158) were independent of BMI. Stratified according to alcohol intake, in moderate drinkers, a positive correlation was found between AN and TNF-alpha concentrations (r = 0.6, p = 0.0001, AST/ALT index (r = 0.34, p = 0.0295) whereas in non-drinkers no such correlations were found. The concentration of AN and BMI displayed a negative correlation in both drinker and nondrinker patients (r = -0.42, p = 0.01 and -0.61; p = 0.012, respectively). We concluded that plasma AN is higher in moderate drinkers compared to non-drinkers, even after correction for BMI. Drinkers suffering from liver steatosis were found to have a positive correlation between AN concentrations, laboratory markers of liver disease and TNF-alpha. Such correlation was absent in non-drinkers suffering from liver steatosis. This suggests that alcohol may modulate the inhibitory effect of TNF-alpha on AN production, and thus, increase its plasma concentrations.  相似文献   
18.
The myocytes of the adult mammalian heart are considered unable to divide. Instead, mitogens induce cardiomyocyte hypertrophy. We have investigated the effect of adenoviral overexpression of cyclin D2 on myocyte proliferation and morphology. Cardiomyocytes in culture were identified by established markers. Cyclin D2 induced DNA synthesis and proliferation of cardiomyocytes and impaired hypertrophy induced by angiotensin II and serum. At the molecular level, cyclin D2 activated CDK4/6 and lead to pRB phosphorylation and downregulation of the cell cycle inhibitors p21Waf1/Cip1 and p27Kip1. Expression of the CDK4/6 inhibitor p16 inhibited proliferation and cyclin D2 overexpressing myocytes became hypertrophic under such conditions. Inhibition of hypertrophy by cyclin D2 correlated with downregulation of p27Kip1. These data show that hypertrophy and proliferation are highly related processes and suggest that cardiomyocyte hypertrophy is due to low amounts of cell cycle activators unable to overcome the block imposed by cell cycle inhibitors. Cell cycle entry upon hypertrophy may be converted to cell division by increased expression of activators such as cyclin D2.  相似文献   
19.
We have evaluated antisense design and efficacy of locked nucleic acid (LNA) and DNA oligonucleotide (ON) mix-mers targeting the conserved HIV-1 dimerization initiation site (DIS). LNA is a high affinity nucleotide analog, nuclease resistant and elicits minimal toxicity. We show that inclusion of LNA bases in antisense ONs augments the interference of HIV-1 genome dimerization. We also demonstrate the concomitant RNase H activation by six consecutive DNA bases in an LNA/DNA mix-mer. We show ON uptake via receptor-mediated transfection of a human T-cell line in which the mix-mers subsequently inhibit replication of a clinical HIV-1 isolate. Thus, the technique of LNA/DNA mix-mer antisense ONs targeting the conserved HIV-1 DIS region may provide a strategy to prevent HIV-1 assembly in the clinic.  相似文献   
20.
In response to ionizing radiation (IR), cells delay cell cycle progression and activate DNA repair. Both processes are vital for genome integrity, but the mechanisms involved in their coordination are not fully understood. In a mass spectrometry screen, we identified the adenosine triphosphate–dependent chromatin-remodeling protein CHD4 (chromodomain helicase DNA-binding protein 4) as a factor that becomes transiently immobilized on chromatin after IR. Knockdown of CHD4 triggers enhanced Cdc25A degradation and p21Cip1 accumulation, which lead to more pronounced cyclin-dependent kinase inhibition and extended cell cycle delay. At DNA double-strand breaks, depletion of CHD4 disrupts the chromatin response at the level of the RNF168 ubiquitin ligase, which in turn impairs local ubiquitylation and BRCA1 assembly. These cell cycle and chromatin defects are accompanied by elevated spontaneous and IR-induced DNA breakage, reduced efficiency of DNA repair, and decreased clonogenic survival. Thus, CHD4 emerges as a novel genome caretaker and a factor that facilitates both checkpoint signaling and repair events after DNA damage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号