首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2717篇
  免费   246篇
  国内免费   1篇
  2964篇
  2024年   5篇
  2023年   18篇
  2022年   20篇
  2021年   65篇
  2020年   48篇
  2019年   39篇
  2018年   59篇
  2017年   60篇
  2016年   95篇
  2015年   156篇
  2014年   149篇
  2013年   183篇
  2012年   263篇
  2011年   254篇
  2010年   148篇
  2009年   135篇
  2008年   182篇
  2007年   154篇
  2006年   168篇
  2005年   169篇
  2004年   131篇
  2003年   113篇
  2002年   110篇
  2001年   21篇
  2000年   12篇
  1999年   33篇
  1998年   17篇
  1997年   9篇
  1996年   13篇
  1995年   12篇
  1994年   11篇
  1993年   6篇
  1992年   14篇
  1991年   7篇
  1990年   8篇
  1989年   4篇
  1988年   5篇
  1987年   7篇
  1986年   5篇
  1985年   4篇
  1984年   3篇
  1983年   4篇
  1981年   3篇
  1977年   3篇
  1973年   3篇
  1971年   3篇
  1969年   3篇
  1967年   4篇
  1882年   2篇
  1878年   2篇
排序方式: 共有2964条查询结果,搜索用时 15 毫秒
71.
We report the use of chemical derivatization with MALDI-MS/MS analysis for de novo sequence analysis. Using three frequently used homology-based search algorithms, we were able to identify more than 40 proteins from banana, a nonmodel plant with unsequenced genome. Furthermore, this approach allowed the identification of different isoforms. We also observed that the identification score obtained varied according to the position of the peptide sequences in the query using the MS-Blast algorithm.  相似文献   
72.
Th1 cytokines promote monocyte differentiation into proatherogenic M1 macrophages, while Th2 cytokines lead to an "alternative" anti-inflammatory M2 macrophage phenotype. Here we show that in human atherosclerotic lesions, the expression of M2 markers and PPARgamma, a nuclear receptor controlling macrophage inflammation, correlate positively. Moreover, PPARgamma activation primes primary human monocytes into M2 differentiation, resulting in a more pronounced anti-inflammatory activity in M1 macrophages. However, PPARgamma activation does not influence M2 marker expression in resting or M1 macrophages, nor does PPARgamma agonist treatment influence the expression of M2 markers in atherosclerotic lesions, indicating that only native monocytes can be primed by PPARgamma activation to an enhanced M2 phenotype. Furthermore, PPARgamma activation significantly increases expression of the M2 marker MR in circulating peripheral blood mononuclear cells. These data demonstrate that PPARgamma activation skews human monocytes toward an anti-inflammatory M2 phenotype.  相似文献   
73.
Pyrroloquinoline quinone (PQQ) acts as a powerful modulator of PGC-1α activation and therefore regulates multiple pathways involved in cellular energy homeostasis. In the present study, we assessed the effects of L6 myotubes incubation with 0.5, 1, and 3 μM PQQ solution for 2 and 24 hr with respect to the cells' lipid metabolism. We demonstrated that PQQ significantly elevates PGC-1α content in a dose- and time-dependent manner with the highest efficiency for 0.5 and 1 µM. The level of free fatty acids was diminished (24 hr: −66%), while an increase in triacylglycerol (TAG) amount was most pronounced after 0.5 μM (2 hr: +93%, 24 hr: +139%) treatment. Ceramide (CER) content was elevated after 2 hr incubation with 0.5 µM and after prolonged exposure to all PQQ concentrations. The cells treated with PQQ for 2 hr exhibited decreased sphinganine (SFA) and sphinganine-1-phosphate (SFA1P) level, while 24 hr incubation resulted in an elevated sphingosine (SFO) amount. In summary, PGC-1α activation promotes TAG and CER synthesis.  相似文献   
74.
75.
Plant Cell, Tissue and Organ Culture (PCTOC) - Slow-growth is a biotechnological tool for medium-term conservation of plant germplasm under in vitro conditions. In the present study, we assessed...  相似文献   
76.
TaxonomyBacteria; Phylum Proteobacteria; Class Gammaproteobacteria; Order Lysobacterales (earlier synonym of Xanthomonadales); Family Lysobacteraceae (earlier synonym of Xanthomonadaceae); Genus Xanthomonas; Species X. hortorum; Pathovars: pv. carotae, pv. vitians, pv. hederae, pv. pelargonii, pv. taraxaci, pv. cynarae, and pv. gardneri.Host range Xanthomonas hortorum affects agricultural crops, and horticultural and wild plants. Tomato, carrot, artichoke, lettuce, pelargonium, ivy, and dandelion were originally described as the main natural hosts of the seven separate pathovars. Artificial inoculation experiments also revealed other hosts. The natural and experimental host ranges are expected to be broader than initially assumed. Additionally, several strains, yet to be assigned to a pathovar within Xhortorum, cause diseases on several other plant species such as peony, sweet wormwood, lavender, and oak‐leaf hydrangea.Epidemiology and control X. hortorum pathovars are mainly disseminated by infected seeds (e.g., Xhortorum pvs carotae and vitians) or cuttings (e.g., Xhortorum pv. pelargonii) and can be further dispersed by wind and rain, or mechanically transferred during planting and cultivation. Global trade of plants, seeds, and other propagating material constitutes a major pathway for their introduction and spread into new geographical areas. The propagules of some pathovars (e.g., X. horturum pv. pelargonii) are spread by insect vectors, while those of others can survive in crop residues and soils, and overwinter until the following growing season (e.g., Xhortorum pvs vitians and carotae). Control measures against Xhortorum pathovars are varied and include exclusion strategies (i.e., by using certification programmes and quarantine regulations) to multiple agricultural practices such as the application of phytosanitary products. Copper‐based compounds against Xhortorum are used, but the emergence of copper‐tolerant strains represents a major threat for their effective management. With the current lack of efficient chemical or biological disease management strategies, host resistance appears promising, but is not without challenges. The intrastrain genetic variability within the same pathovar poses a challenge for breeding cultivars with durable resistance.Useful websites https://gd.eppo.int/taxon/XANTGA, https://gd.eppo.int/taxon/XANTCR, https://gd.eppo.int/taxon/XANTPE, https://www.euroxanth.eu, http://www.xanthomonas.org, http://www.xanthomonas.org/dokuwiki  相似文献   
77.
Abstract The c -type cytochrome and protein profiles were compared for a number of cultures of Paracoccus denitrificans obtained from a range of culture collections. The cultures fell into two groups corresponding to the two original isolates of this bacterial species. One group, which included NCIMB 8944, ATCC 13543, ATCC 17741, ATCC 19367, Pd 1222 and DSM 413, were similar or identical to LMD 22.21. The second group, including DSM 65 and LMG 4218, were similar or identical to LMD 52.44. These groupings were not compatible with the recorded history of culture deposition. Mass spectrometry and amino acid sequence comparisons showed that the cytochrome c -550 of the LMD 52.44 culture group differed by 16% from that of the LMD 22.21 group, and yet was only 1% different from the cytochrome c -550 of Thiosphaera pantotropha . These results suggest that consideration should be given to creation of a new species of Paracoccus pantotropha , which would include Thiosphaera pantotropha and Paracoccus denitrificans LMD 52.44.  相似文献   
78.
We studied the root foraging ability and its consequences for the nutrient acquisition of five grass species that differ in relative growth rate and that occur in habitats that differ widely in nutrient availability. Foraging responses were quantified, based on the performance of the plants in homogeneous and heterogeneous soil environments of the same overall nutrient availability. Although all species tended to produce a significantly higher root length density in a nutrient-rich patch, this response was significant only for the faster-growing species. The increased root length density resulted from small, though not significant, changes in root biomass and specific root length. The effectiveness of root proliferation was determined by quantifying the total amount of nutrients (N and P) accumulated by the plants over the course of the experiment. Plants acquired more N in a heterogeneous environment than in a homogeneous environment, although the total nutrient availability was the same. The ability to acquire nutrients (N or P) in the heterogeneous environment was not related to the ability of species to increase root length density in response to local nutrient enrichment. In contrast to other studies, our results suggest that the role of morphological plasticity of roots in acquiring patchily distributed resources is limited. Possible reasons for this discrepancy are discussed. Received: 11 September 1997 / Accepted: 28 February 1998  相似文献   
79.
80.
Active form of Notch imposes T cell fate in human progenitor cells   总被引:14,自引:0,他引:14  
The crucial role of Notch signaling in cell fate decisions in hematopoietic lineage and T lymphocyte development has been well established in mice. Overexpression of the intracellular domain of Notch mediates signal transduction of the protein. By retroviral transduction of this constitutively active truncated intracellular domain in human CD34+ umbilical cord blood progenitor cells, we were able to show that, in coculture with the stromal MS-5 cell line, depending on the cytokines added, the differentiation toward CD19+ B lymphocytes was blocked, the differentiation toward CD14+ monocytes was inhibited, and the differentiation toward CD56+ NK cells was favored. The number of CD7+cyCD3+ cells, a phenotype similar to T/NK progenitor cells, was also markedly increased. In fetal thymus organ culture, transduced CD34+ progenitor cells from umbilical cord blood cells or from thymus consistently generated more TCR-gammadelta T cells, whereas the other T cell subpopulations were largely unaffected. Interestingly, when injected in vivo in SCID-nonobese diabetic mice, the transduced cells generated ectopically human CD4+CD8+ TCR-alphabeta cells in the bone marrow, cells that are normally only present in the thymus, and lacked B cell differentiation potential. Our results show unequivocally that, in human, Notch signaling inhibits the monocyte and B cell fate, promotes the T cell fate, and alters the normal T cell differentiation pathway compatible with a pretumoral state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号