首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2757篇
  免费   246篇
  国内免费   1篇
  3004篇
  2024年   5篇
  2023年   20篇
  2022年   20篇
  2021年   64篇
  2020年   46篇
  2019年   40篇
  2018年   59篇
  2017年   61篇
  2016年   95篇
  2015年   154篇
  2014年   149篇
  2013年   181篇
  2012年   262篇
  2011年   255篇
  2010年   146篇
  2009年   139篇
  2008年   183篇
  2007年   155篇
  2006年   171篇
  2005年   174篇
  2004年   131篇
  2003年   114篇
  2002年   116篇
  2001年   26篇
  2000年   15篇
  1999年   34篇
  1998年   17篇
  1997年   9篇
  1996年   13篇
  1995年   12篇
  1994年   12篇
  1993年   6篇
  1992年   17篇
  1991年   8篇
  1990年   10篇
  1989年   6篇
  1988年   6篇
  1987年   7篇
  1986年   5篇
  1985年   5篇
  1984年   4篇
  1983年   4篇
  1981年   4篇
  1979年   3篇
  1977年   4篇
  1973年   3篇
  1971年   3篇
  1969年   3篇
  1967年   4篇
  1878年   2篇
排序方式: 共有3004条查询结果,搜索用时 0 毫秒
81.
Nucleotide excision repair (NER) is the principal pathway for counteracting cytotoxic and mutagenic effects of UV irradiation. To provide insight into the in vivo regulation of the DNA damage recognition step of global genome NER (GG-NER), we constructed cell lines expressing fluorescently tagged damaged DNA binding protein 1 (DDB1). DDB1 is a core subunit of a number of cullin 4-RING ubiquitin ligase complexes. UV-activated DDB1-DDB2-CUL4A-ROC1 ubiquitin ligase participates in the initiation of GG-NER and triggers the UV-dependent degradation of its subunit DDB2. We found that DDB1 rapidly accumulates on DNA damage sites. However, its binding to damaged DNA is not static, since DDB1 constantly dissociates from and binds to DNA lesions. DDB2, but not CUL4A, was indispensable for binding of DDB1 to DNA damage sites. The residence time of DDB1 on the damage site is independent of the main damage-recognizing protein of GG-NER, XPC, as well as of UV-induced proteolysis of DDB2. The amount of DDB1 that is temporally immobilized on damaged DNA critically depends on DDB2 levels in the cell. We propose a model in which UV-dependent degradation of DDB2 is important for the release of DDB1 from continuous association to unrepaired DNA and makes DDB1 available for its other DNA damage response functions.  相似文献   
82.
What factors determine the distribution of a species is a central question in ecology and conservation biology. In general, the distribution of plant species is assumed to be controlled by dispersal or environmentally controlled recruitment. For plant species which are critically dependent on mycorrhizal symbionts for germination and seedling establishment, specificity in mycorrhizal associations and availability of suitable mycorrhizal fungi can be expected to have a major impact on successful colonization and establishment and thus ultimately on a species distribution. We combined seed germination experiments with soil analyses and fungal assessments using 454 amplicon pyrosequencing to test the relative importance of dispersal limitation, mycorrhizal availability and local growth conditions on the distribution of the orchid species Liparis loeselii, which, despite being widely distributed, is rare and endangered in Europe. We compared local soil conditions, seed germination and mycorrhizal availability in the soil between locations in northern Belgium and France where L. loeselii occurs naturally and locations where conditions appear suitable, but where adults of the species are absent. Our results indicated that mycorrhizal communities associating with L. loeselii varied among sites and plant life cycle stages, but the observed variations did not affect seed germination, which occurred regardless of current L. loeselii presence and was significantly affected by soil moisture content. These results indicate that L. loeselii is a mycorrhizal generalist capable of opportunistically associating with a variety of fungal partners to induce seed germination. They also indicate that availability of fungal associates is not necessarily the determining factor driving the distribution of mycorrhizal plant species.  相似文献   
83.
The imperfect ascomycetous yeastsCandida parapsilosis andArxula adeninivorans degraded 3-hydroxybenzoic acid via gentisate which was the cleavage substrate. 4-Hydroxybenzoic acid was metabolized via protocatechuate. No cleavage enzyme for the latter was detected. In stead of this NADH- and NADPH-dependent monooxygenases were present. In cells grown at the expense of hydroquinone and 4-hydroxygenzoic acid, enzymes of the hydroxyhydroquinone variant of the 3-oxoadipate pathway were demonstrated, which also took part in the degradation of 2,4-dihydroxybenzoic acid byC. parapsilosis.Abbreviations HHQ Hydroxyhydroquinone (1,2,4-trihydroxybenzene) - GSH reduced Glutathione  相似文献   
84.
In plant innate immunity, the surface‐exposed leucine‐rich repeat receptor kinases EFR and FLS2 mediate recognition of the bacterial pathogen‐associated molecular patterns EF‐Tu and flagellin, respectively. We identified the Arabidopsis stromal‐derived factor‐2 (SDF2) as being required for EFR function, and to a lesser extent FLS2 function. SDF2 resides in an endoplasmic reticulum (ER) protein complex with the Hsp40 ERdj3B and the Hsp70 BiP, which are components of the ER‐quality control (ER‐QC). Loss of SDF2 results in ER retention and degradation of EFR. The differential requirement for ER‐QC components by EFR and FLS2 could be linked to N‐glycosylation mediated by STT3a, a catalytic subunit of the oligosaccharyltransferase complex involved in co‐translational N‐glycosylation. Our results show that the plasma membrane EFR requires the ER complex SDF2–ERdj3B–BiP for its proper accumulation, and provide a demonstration of a physiological requirement for ER‐QC in transmembrane receptor function in plants. They also provide an unexpected differential requirement for ER‐QC and N‐glycosylation components by two closely related receptors.  相似文献   
85.
The members of the cyprinid subfamily Gobioninae, commonly called gudgeons, form one of the most well-established assemblages in the family Cyprinidae. The subfamily is a species-rich group of fishes, these fishes display diverse life histories, appearances, and behavior. The phylogenetic relationships of Gobioninae are examined using sequence data from four loci: cytochrome b, cytochrome c oxidase I, opsin, and recombination activating gene 1. This investigation produced a data matrix of 4114 bp for 162 taxa that was analyzed using parsimony, maximum likelihood, and Bayesian inference methods. The phylogenies our analyses recovered corroborate recent studies on the group. The subfamily Gobioninae is monophyletic and composed of three major lineages. We find evidence for a Hemibarbus-Squalidus group, and the tribes Gobionini and Sarcocheilichthyini, with the Hemibarbus-Squalidus group sister to a clade of Gobionini-Sarcocheilichthyini. The Hemibarbus-Squalidus group includes those two genera; the tribe Sarcocheilichthyini includes Coreius, Coreoleuciscus, Gnathopogon, Gobiocypris, Ladislavia, Paracanthobrama, Pseudorasbora, Pseudopungtungia, Pungtungia, Rhinogobio, and Sarcocheilichthys; the tribe Gobionini includes Abbottina, Biwia, Gobio, Gobiobotia, Huigobio, Microphysogobio, Platysmacheilus, Pseudogobio, Romanogobio, Saurogobio, and Xenophysogobio. The monotypic Acanthogobio is placed into the synonymy of Gobio. We tentatively assign Belligobio to the Hemibarbus-Squalidus group and Mesogobio to Gobionini; Paraleucogobio and Parasqualidus remain incertae sedis. Based on the topologies presented, the evolution of swim bladder specializations, a distinctive feature among cyprinids, has occurred more than once within the subfamily.  相似文献   
86.
Peroxisome proliferator-activated receptor (PPARgamma) is a nuclear receptor that is activated by fatty acids and derivatives and the antidiabetic glitazones, which plays a role in the control of lipid and glucose homeostasis. In the present work, we tested the hypothesis that PPARgamma plays a role in reproductive tissues by studying its expression and function in the hypothalamo-pituitary-ovary axis in the sheep. PPARgamma 1 and PPARgamma 2 proteins and mRNAs were detected in whole ovine pituitary and ovary but not in hypothalamic extracts. In situ hybridization on ovarian section localized PPARgamma mRNA in the granulosa layer of follicles. Interestingly, PPARgamma expression was higher in small antral (1-3 mm diameter) than in preovulatory follicles (>5 mm diameter) (P < 0.001) and was not correlated with healthy status. To assess the biological activity of ovarian PPARgamma, ovine granulosa cells were transfected with a reporter construct driven by PPARgamma-responsive elements. Addition of rosiglitazone, a PPARgamma ligand, stimulated reporter gene expression, showing that endogenous PPARgamma is functional in ovine granulosa cells in vitro. Moreover, rosiglitazone inhibited granulosa cell proliferation (P < 0.05) and increased the secretion of progesterone in vitro (P < 0.05). This stimulation effect was stronger in granulosa cells from small than from large follicles. In contrast, rosiglitazone had no effect on LH, FSH, prolactin and growth hormone secretion by ovine pituitary cells in vitro. Overall, these data suggest that PPARgamma ligands might stimulate follicular differentiation in vivo likely through a direct action on granulosa cells rather than by modulating pituitary hormone secretion.  相似文献   
87.
Cre recombinase expression can result in phenotypic aberrations in plants   总被引:10,自引:0,他引:10  
The cre recombinase gene was stably introduced and expressed in tomato, petunia and Nicotiana tabacum. Some plants expressing the cre gene driven by a CaMV 35S promoter displayed growth retardation and a distinct pattern of chlorosis in their leaves. Although no direct relation can be proven between the phenotype and cre expression, aberrant phenotypes always co-segregate with the transgene, which strongly suggests a correlation. The severity of the phenotype does not correlate with the level of steady-state mRNA in mature leaves, but with the timing of cre expression during organogenesis. The early onset of cre expression in tomato is correlated with a more severe phenotype and with higher germinal transmission frequencies of site-specific deletions. No aberrant phenotype was observed when a tissue-specific phaseolin promoter was used to drive the cre gene. The data suggest that for the application of recombinases in plants, expression is best limited to specific tissues and a short time frame.[12pt] Abbreviations: bar, the phosphinotricin acetyltransferase gene; CAM, chloramphenicol resistance gene; Ds 5 & Ds 3, borders of the Ds transposable element from maize forming a functional transposable element that embodies the interjacent DNA; gus, the -glucoronidase gene; gus-int, the gus gene interrupted by a plant intron; hpt, the hygromycin phosphotransferase gene; nptII, the neomycin phosphotransferase gene; ORI, bacterial origin for plasmid replication in Escherichia coli of plasmid p15A  相似文献   
88.
Cichlid fishes are emblematic models for the study of adaptive radiation, driven by natural and sexual selection. Parasite mediated selection is an important component in these processes, and the evolution of their immune system therefore merits special attention. In this study, light is shed on the phylogeny of the b family of cichlid major histocompatibility complex (MHC) class IIB genes. Full-length coding sequences were used to reconstruct phylogenies using criteria of maximum parsimony, maximum likelihood and Bayesian inference. All analyses suggest monophyly of the b family of cichlid MHC class IIB genes, although sequences of the cichlid sister taxa are currently not available. Two evolutionary lineages of these genes, respectively encompassing the recently defined genomic regions DBB-DEB-DFB and DCB-DDB, show highly contrasting levels of differentiation. To explore putative causes for these differences, exon 2 sequences were screened for variation in recombination rate and strength of selection. The more diversified lineage of cichlid MHC class IIB b genes was found to have higher levels of both recombination and selection. This is consistent with the observation in other taxa that recombination facilitates the horizontal spread of positively selected sites across MHC loci and hence contributes to fast sequence evolution. In contrast, the lineage that showed low diversification might either be under stabilizing selection or is evolutionary constrained by its low recombination rate. We speculate whether this lineage might include MHC genes with non-classical functions.  相似文献   
89.
90.
Cell division in Escherichia coli involves a set of essential proteins that assembles at midcell to form the so-called divisome. The divisome regulates the invagination of the inner membrane, cell wall synthesis, and inward growth of the outer membrane. One of the divisome proteins, FtsQ, plays a central but enigmatic role in cell division. This protein associates with FtsB and FtsL, which, like FtsQ, are bitopic inner membrane proteins with a large periplasmic domain (denoted FtsQp, FtsBp, and FtsLp) that is indispensable for the function of each protein. Considering the vital nature and accessible location of the FtsQBL complex, it is an attractive target for protein-protein interaction inhibitors intended to block bacterial cell division. In this study, we expressed FtsQp, FtsBp, and FtsLp individually and in combination. Upon co-expression, FtsQp was co-purified with FtsBp and FtsLp from E. coli extracts as a stable trimeric complex. FtsBp was also shown to interact with FtsQp in the absence of FtsLp albeit with lower affinity. Interactions were mapped at the C terminus of the respective domains by site-specific cross-linking. The binding affinity and 1:1:1 stoichiometry of the FtsQpBpLp complex and the FtsQpBp subcomplex were determined in complementary surface plasmon resonance, analytical ultracentrifugation, and native mass spectrometry experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号