首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1306篇
  免费   101篇
  1407篇
  2024年   1篇
  2023年   5篇
  2022年   35篇
  2021年   55篇
  2020年   32篇
  2019年   30篇
  2018年   54篇
  2017年   26篇
  2016年   63篇
  2015年   84篇
  2014年   75篇
  2013年   89篇
  2012年   103篇
  2011年   115篇
  2010年   72篇
  2009年   54篇
  2008年   78篇
  2007年   94篇
  2006年   70篇
  2005年   72篇
  2004年   61篇
  2003年   58篇
  2002年   35篇
  2001年   2篇
  2000年   5篇
  1999年   8篇
  1998年   9篇
  1997年   4篇
  1996年   4篇
  1995年   3篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   2篇
  1979年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有1407条查询结果,搜索用时 12 毫秒
931.
Two strains, asporogenous Z-7940 and sporogenous Z-7939, of a moderately haloalkaliphilic, obligately anaerobic, fermentative bacteria, motile, with Gram-positive cell wall structure, were isolated from soda deposits in Lake Magadi, Kenya. Both strains are mesophilic and utilize only two amino acids, histidine and glutamate, with formation of acetate and ammonium as the main end products. Strain Z-7939 in addition is able to utilize pyruvate. DNA-DNA homology between strains Z-7940 and Z-7939 was 94%, indicating that in spite of phenotypic differences they belong to the same species. They are true alkaliphiles with a pH range for growth of the type strain Z-7940 from pH 8.0 to pH 10.5, optimum at pH 9.4. Both strains obligately depend on sodium and bicarbonate ions. The optimum salt concentration for growth of the type strain is 8–10% wt/vol and the range from 4% to 16%. The G+C content of strain Z-7940 is 31.9 mol% and the strain Z-7939 is 32.3 mol%. Analysis of 16S rDNA sequence of the type strain shows it to belong to cluster XI of the low G+C Gram-positive bacteria. On the basis of its distinct phylogenetic position and physiological properties, we propose a new genus and new species Natronoincola histidinovorans for these strains. The type strain is Z-7940 (=DSM 11416). Received: 5 March 1998 / Accepted: 3 April 1998  相似文献   
932.
Genetically encoded photosensitizers (PSs), e.g. ROS generating proteins, correspond to a novel class of PSs that are highly desirable for biological and medical applications since they can be used in combination with a variety of genetic engineering manipulations allowing for precise spatio‐temporal control of ROS production within living cells and organisms. In contrast to the commonly used chemical PSs, they can be modified using genetic engineering approaches and targeted to particular cellular compartments and cell types. Mini Singlet Oxygen Generator (miniSOG), a small flavoprotein capable of singlet oxygen production upon blue light irradiation, was initially reported as a high contrast probe for correlative light electron microscopy (CLEM) without the need of exogenous ligands, probes or destructive permeabilizing detergents. Further miniSOG was successfully applied for chromophore‐assisted light inactivation (CALI) of proteins, as well as for photo‐induced cell ablation in tissue cultures and in Caenorhabditis elegans. Finally, a novel approach of immunophotosensitizing has been developed, exploiting the specificity of mini‐antibodies or selective scaffold proteins and photo‐induced cytotoxicity of miniSOG, which is particularly promising for selective non‐invasive photodynamic therapy of cancer (PDT) due to the spatial selectivity and locality of destructive action compared to other methods of oncotherapy.

  相似文献   

933.
The Sm and Sm-like proteins are widely distributed among bacteria, archaea and eukarya. They participate in many processes related to RNA-processing and regulation of gene expression. While the function of the bacterial Lsm protein Hfq and eukaryotic Sm/Lsm proteins is rather well studied, the role of Lsm proteins in Archaea is investigated poorly. In this work, the RNA-binding ability of an archaeal Hfq-like protein from Methanococcus jannaschii has been studied by X-ray crystallography, anisotropy fluorescence and surface plasmon resonance. It has been found that MjaHfq preserves the proximal RNA-binding site that usually recognizes uridine-rich sequences. Distal adenine-binding and lateral RNA-binding sites show considerable structural changes as compared to bacterial Hfq. MjaHfq did not bind mononucleotides at these sites and would not recognize single-stranded RNA as its bacterial homologues. Nevertheless, MjaHfq possesses affinity to poly(A) RNA that seems to bind at the unstructured positive-charged N-terminal tail of the protein.  相似文献   
934.
Intraerythrocytic growth of the human malaria parasite Plasmodium falciparum depends on delivery of nutrients. Moreover, infection challenges cell volume constancy of the host erythrocyte requiring enhanced activity of cell volume regulatory mechanisms. Patch clamp recording demonstrated inwardly and outwardly rectifying anion channels in infected but not in control erythrocytes. The molecular identity of those channels remained elusive. We show here for one channel type that voltage dependence, cell volume sensitivity, and activation by oxidation are identical to ClC-2. Moreover, Western blots and FACS analysis showed protein and functional ClC-2 expression in human erythrocytes and erythrocytes from wild type (Clcn2(+/+)) but not from Clcn2(-/-) mice. Finally, patch clamp recording revealed activation of volume-sensitive inwardly rectifying channels in Plasmodium berghei-infected Clcn2(+/+) but not Clcn2(-/-) erythrocytes. Erythrocytes from infected mice of both genotypes differed in cell volume and inhibition of ClC-2 by ZnCl(2) (1 mm) induced an increase of cell volume only in parasitized Clcn2(+/+) erythrocytes. Lack of ClC-2 did not inhibit P. berghei development in vivo nor substantially affect the mortality of infected mice. In conclusion, activation of host ClC-2 channels participates in the altered permeability of Plasmodium-infected erythrocytes but is not required for intraerythrocytic parasite survival.  相似文献   
935.
Disturbance regimes are changing in forests across the world in response to global climate change. Despite the profound impacts of disturbances on ecosystem services and biodiversity, assessments of disturbances at the global scale remain scarce. Here, we analyzed natural disturbances in boreal and temperate forest ecosystems for the period 2001–2014, aiming to 1) quantify their within- and between-biome variation and 2) compare the climate sensitivity of disturbances across biomes. We studied 103 unmanaged forest landscapes with a total land area of 28.2 × 106 ha, distributed across five continents. A consistent and comprehensive quantification of disturbances was derived by combining satellite-based disturbance maps with local expert knowledge of disturbance agents. We used Gaussian finite mixture models to identify clusters of landscapes with similar disturbance activity as indicated by the percent forest area disturbed as well as the size, edge density and perimeter–area-ratio of disturbed patches. The climate sensitivity of disturbances was analyzed using Bayesian generalized linear mixed effect models and a globally consistent climate dataset. Within-biome variation in natural disturbances was high in both boreal and temperate biomes, and disturbance patterns did not vary systematically with latitude or biome. The emergent clusters of disturbance activity in the boreal zone were similar to those in the temperate zone, but boreal landscapes were more likely to experience high disturbance activity than their temperate counterparts. Across both biomes high disturbance activity was particularly associated with wildfire, and was consistently linked to years with warmer and drier than average conditions. Natural disturbances are a key driver of variability in boreal and temperate forest ecosystems, with high similarity in the disturbance patterns between both biomes. The universally high climate sensitivity of disturbances across boreal and temperate ecosystems indicates that future climate change could substantially increase disturbance activity.  相似文献   
936.
937.
The lipid peroxidation process in hemocytes, activities of phenoloxidase and key enzymatic antioxidants (superoxide dismutase, glutathione‐S‐transferase, catalase) and nonenzymatic antioxidants (thiols, ascorbate) in hemolymph of the greater wax moth Galleria mellonella L. (Lepidoptera: Pyralidae) were studied during the encapsulation process of nylon implants. It has been established that as soon as 15 min after piercing a cuticle with the implant, a capsule is formed on its surface. Active melanization of the capsule has been shown to last for 4 h. During the first hours after incorporating the implant, an increase in phenoloxidase activity and lipid peroxidation in the insect hemocytes has been revealed. Adhesion and degranulation on the surface of foreign object lead to the depletion of total hemocytes count (THC). Our results indicated that thiols and ascorbate molecules take part in the immediate antioxidant response, during later stages of encapsulation process hemolymph glutathione‐S‐transferase detoxifies and protects insect organism thereby restoring the internal redox balance. We suggest that nonenzymatic and enzymatic antioxidants of hemolymph plasma play a key role in the maintenance of redox balance during encapsulation of foreign targets.  相似文献   
938.
Hibiscus green spot virus (HGSV) is a recently discovered and so far poorly characterized bacilliform plant virus with a positive‐stranded RNA genome consisting of three RNA species. Here, we demonstrate that the proteins encoded by the ORF2 and ORF3 in HGSV RNA2 are necessary and sufficient to mediate cell‐to‐cell movement of transport‐deficient Potato virus X in Nicotiana benthamiana. These two genes represent a specialized transport module called a ‘binary movement block’ (BMB), and ORF2 and ORF3 are termed BMB1 and BMB2 genes. In agroinfiltrated epidermal cells of N. benthamiana, green fluorescent protein (GFP)‐BMB1 fusion protein was distributed diffusely in the cytoplasm and the nucleus. However, in the presence of BMB2, GFP‐BMB1 was directed to cell wall‐adjacent elongated bodies at the cell periphery, to cell wall‐embedded punctate structures co‐localizing with callose deposits at plasmodesmata, and to cells adjacent to the initially transformed cell. Thus, BMB2 can mediate the transport of BMB1 to and through plasmodesmata. In general, our observations support the idea that cell‐to‐cell trafficking of movement proteins involves an initial delivery to membrane compartments adjacent to plasmodesmata, subsequent entry of the plasmodesmata cavity and, finally, transport to adjacent cells. This process, as an alternative to tubule‐based transport, has most likely evolved independently in triple gene block (TGB), double gene block (DGB), BMB and the single gene‐coded transport system.  相似文献   
939.
940.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号