首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1306篇
  免费   101篇
  1407篇
  2024年   1篇
  2023年   5篇
  2022年   35篇
  2021年   55篇
  2020年   32篇
  2019年   30篇
  2018年   54篇
  2017年   26篇
  2016年   63篇
  2015年   84篇
  2014年   75篇
  2013年   89篇
  2012年   103篇
  2011年   115篇
  2010年   72篇
  2009年   54篇
  2008年   78篇
  2007年   94篇
  2006年   70篇
  2005年   72篇
  2004年   61篇
  2003年   58篇
  2002年   35篇
  2001年   2篇
  2000年   5篇
  1999年   8篇
  1998年   9篇
  1997年   4篇
  1996年   4篇
  1995年   3篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   2篇
  1979年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有1407条查询结果,搜索用时 9 毫秒
171.
Three populations of the grasshopper Trimerotropis pallidipennis from southern Argentina have been studied cytologically. A very characteristic B-chromosome was found in all three. They also showed geographical variability in respect of the presence of pericentric inversions, and the inversion system was found to influence chiasma frequency. The Laguna Blanca population, which is on the hypothetical pathway the species is believed to have followed during its migration from northern to southern latitudes, has the same karyotype composition as the N. American form, with fixed inversions in the 3 largest autosomes and the X-chromosome. Its members have a high total chiasma frequency and a great number of interstitial chiasmata. The Sierra de la Ventana population, situated at the absolute eastern border of the species distribution is highly polymorphic with respect to the presence of inversions in the medium chromosomes. Its members have the lowest total chiasma frequency and a greatly reduced number of interstitial chiasmata. Situated geographically between the other two, the Choele-Choel population has the highest frequency of inversions and many of them are homozygous. Its members have a higher total chiasma frequency than that observed in specimens from Sierra de la Ventana, and a greatly reduced number of interstitial chiasmata, similar to that observed in individuals from the latter population.  相似文献   
172.
Nephropathic cystinosis is a lysosomal storage disorder caused by mutations in the CTNS gene encoding cystine transporter cystinosin that results in accumulation of amino acid cystine in the lysosomes throughout the body and especially affects kidneys. Early manifestations of the disease include renal Fanconi syndrome, a generalized proximal tubular dysfunction. Current therapy of cystinosis is based on cystine-lowering drug cysteamine that postpones the disease progression but offers no cure for the Fanconi syndrome. We studied the mechanisms of impaired reabsorption in human proximal tubular epithelial cells (PTEC) deficient for cystinosin and investigated the endo-lysosomal compartments of cystinosin-deficient PTEC by means of light and electron microscopy. We demonstrate that cystinosin-deficient cells had abnormal shape and distribution of the endo-lysosomal compartments and impaired endocytosis, with decreased surface expression of multiligand receptors and delayed lysosomal cargo processing. Treatment with cysteamine improved surface expression and lysosomal cargo processing but did not lead to a complete restoration and had no effect on the abnormal morphology of endo-lysosomal compartments. The obtained results improve our understanding of the mechanism of proximal tubular dysfunction in cystinosis and indicate that impaired protein reabsorption can, at least partially, be explained by abnormal trafficking of endosomal vesicles.  相似文献   
173.
Quantum-chemical study of structures, energies, and effective partial charge distribution for several models of the Rieske protein redox center is performed in terms of the B3LYP density functional method in combination with the broken symmetry approach using three different atomic basis sets. The structure of the redox complex optimized in vacuum differs markedly from that inside the protein. This means that the protein matrix imposes some stress on the active site resulting in distortion of its structure. The redox potentials calculated for the real active site structure are in a substantially better agreement with the experiment than those calculated for the idealized structure. This shows an important role of the active site distortion in tuning its redox potential. The reference absolute electrode potential of the standard hydrogen electrode is used that accounts for the correction caused by the water surface potential. Electrostatic calculations are performed in the framework of the polarizable solute model. Two dielectric permittivities of the protein are employed: the optical permittivity for calculation of the intraprotein electric field, and the static permittivity for calculation of the dielectric response energy. Only this approach results in a reasonable agreement of the calculated and experimental redox potentials.  相似文献   
174.
The eukaryotic SMC1/SMC3 heterodimer is essential for sister chromatid cohesion and acts in DNA repair and recombination. Dimerization depends on the central hinge domain present in all SMC proteins, which is flanked at each side by extended coiled-coil regions that terminate in specific globular domains. Here we report on DNA interactions of the eukaryotic, heterodimeric SMC1/SMC3 hinge regions, using the two known isoforms, SMC1alpha/SMC3 and the meiotic SMC1beta/SMC3. Both dimers bind DNA with a preference for double-stranded DNA and DNA rich in potential secondary structures. Both dimers form large protein-DNA networks and promote reannealing of complementary DNA strands. DNA binding but not dimerization depends on approximately 20 amino acids of transitional sequence into the coiled-coil region. Replacement of three highly conserved glycine residues, thought to be required for dimerization, in one of the two hinge domains still allows formation of a stable dimer, but if two hinge domains are mutated dimerization fails. Single-mutant dimers bind DNA, but hinge monomers do not. Together, we show that eukaryotic hinge dimerization does not require conserved glycines in both hinge domains, that only the transition into the coiled-coil region rather than the entire coiled-coil region is necessary for DNA binding, and that dimerization is required but not sufficient for DNA binding of the eukaryotic hinge heterodimer.  相似文献   
175.
Subpopulations of B-lymphocytes traffic to different sites and organs to provide diverse and tissue-specific functions. Here, we provide evidence that epigenetic differences confer a neuroinvasive phenotype. An EBV+ B cell lymphoma cell line (M14) with low frequency trafficking to the CNS was neuroadapted to generate a highly neuroinvasive B-cell population (MUN14). MUN14 B cells efficiently infiltrated the CNS within one week and produced neurological pathologies. We compared the gene expression profiles of viral and cellular genes using RNA-Seq and identified one viral (EBNA1) and several cellular gene candidates, including secreted phosphoprotein 1/osteopontin (SPP1/OPN), neuron navigator 3 (NAV3), CXCR4, and germinal center-associated signaling and motility protein (GCSAM) that were selectively upregulated in MUN14. ATAC-Seq and ChIP-qPCR revealed that these gene expression changes correlated with epigenetic changes at gene regulatory elements. The neuroinvasive phenotype could be attenuated with a neutralizing antibody to OPN, confirming the functional role of this protein in trafficking EBV+ B cells to the CNS. These studies indicate that B-cell trafficking to the CNS can be acquired by epigenetic adaptations and provide a new model to study B-cell neuroinvasion associated CNS lymphoma and autoimmune disease of the CNS, including multiple sclerosis (MS).  相似文献   
176.
Biochemistry (Moscow) - Blood-brain barrier (BBB) is a structural and functional element of the neurovascular unit (NVU), which includes cells of neuronal, glial, and endothelial nature. The main...  相似文献   
177.
Aberrant end joining of DNA double strand breaks leads to chromosomal rearrangements and to insertion of nuclear or mitochondrial DNA into breakpoints, which is commonly observed in cancer cells and constitutes a major threat to genome integrity. However, the mechanisms that are causative for these insertions are largely unknown. By monitoring end joining of different linear DNA substrates introduced into HEK293 cells, as well as by examining end joining of CRISPR/Cas9 induced DNA breaks in HEK293 and HeLa cells, we provide evidence that the dNTPase activity of SAMHD1 impedes aberrant DNA resynthesis at DNA breaks during DNA end joining. Hence, SAMHD1 expression or low intracellular dNTP levels lead to shorter repair joints and impede insertion of distant DNA regions prior end repair. Our results reveal a novel role for SAMHD1 in DNA end joining and provide new insights into how loss of SAMHD1 may contribute to genome instability and cancer development.  相似文献   
178.
179.
Low-load compression testing: a novel way of measuring biofilm thickness   总被引:1,自引:0,他引:1  
Biofilms are complex and dynamic communities of microorganisms that are studied in many fields due to their abundance and economic impact. Biofilm thickness is an important parameter in biofilm characterization. Current methods of measuring biofilm thicknesses have several limitations, including application, availability, and costs. Here, we present low-load compression testing (LLCT) as a new method for measuring biofilm thickness. With LLCT, biofilm thicknesses are measured during compression by inducing small loads, up to 5 Pa, corresponding to 0.1% deformation, making LLCT essentially a nondestructive technique. Comparison of the thicknesses of various bacterial and yeasts biofilms obtained by LLCT and by using confocal laser scanning microscopy (CLSM) resulted in the conclusion that CLSM underestimates the biofilm thickness due to poor penetration of different fluorescent dyes, especially through the thicker biofilms, whereas LLCT does not suffer from this thickness limitation.  相似文献   
180.
Many pathogens utilize the formation of transmembrane pores in target cells in the process of infection. A great number of pore-forming proteins, both bacterial and viral, are considered to be important virulence factors, which makes them attractive targets for the discovery of new therapeutic agents. Our research is based on the idea that compounds designed to block the pores can inhibit the action of virulence factors, and that the chances to find high affinity blocking agents increase if they have the same symmetry as the target pore. Recently, we demonstrated that derivatives of beta-cyclodextrin inhibited anthrax lethal toxin (LeTx) action by blocking the transmembrane pore formed by the protective antigen (PA) subunit of the toxin. To test the broader applicability of this approach, we sought beta-cyclodextrin derivatives capable of inhibiting the activity of Staphylococcus aureus alpha-hemolysin (alpha-HL), which is regarded as a major virulence factor playing an important role in staphylococcal infection. We identified several amino acid derivatives of beta-cyclodextrin that inhibited the activity of alpha-HL and LeTx in cell-based assays at low micromolar concentrations. One of the compounds was tested for the ability to block ion conductance through the pores formed by alpha-HL and PA in artificial lipid membranes. We anticipate that this approach can serve as the basis for a structure-directed drug discovery program to find new and effective therapeutics against various pathogens that utilize pore-forming proteins as virulence factors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号