首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1303篇
  免费   101篇
  2023年   5篇
  2022年   33篇
  2021年   55篇
  2020年   32篇
  2019年   30篇
  2018年   54篇
  2017年   26篇
  2016年   63篇
  2015年   84篇
  2014年   75篇
  2013年   89篇
  2012年   103篇
  2011年   115篇
  2010年   72篇
  2009年   54篇
  2008年   78篇
  2007年   94篇
  2006年   70篇
  2005年   72篇
  2004年   61篇
  2003年   58篇
  2002年   35篇
  2001年   2篇
  2000年   5篇
  1999年   8篇
  1998年   9篇
  1997年   4篇
  1996年   4篇
  1995年   3篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   2篇
  1979年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有1404条查询结果,搜索用时 46 毫秒
131.
A high level of functional recombinant rat cytochrome P450C24 enzyme (CYP24A1) was obtained (40-50mg/L) using an Escherichia coli expression system. Purified enzyme was stable with retention of spectral and catalytic activity. The rate of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] side-chain oxidation and cleavage to the end-product calcitroic acid was directly related to the rate of electron transfer from the ferredoxin redox partner. It was determined from substrate-induced spectral shifts that the 1 alpha- and 25-hydroxyl groups on vitamin D(3) metabolites and analogs were the major determinants for high-affinity binding to CYP24A1. Lowest K(d) values were obtained for 1 alpha-vitamin D(3) (0.06 microM) and 1,25-dihydroxyvitamin D(3) (0.05 microM) whereas unmodified parental vitamin D(3) and the non-secosteroid 25-hydroxycholesterol had lower affinities with K(d) values of 1.3 and 1.9 microM, respectively. The lowest binding affinity for natural vitamin D metabolites was observed for 24,25-dihydroxyvitamin D(3) [24,25(OH)(2)D(3)] (0.43 microM). Kinetic analyses of the two natural substrates 25-hydroxyvitamin D(3) [25(OH)D(3)] and 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] revealed similar K(m) values (0.35 and 0.38 microM, respectively), however, the turnover number was higher for 25(OH)D(3) compared to 1,25(OH)(2)D(3) (4.2 and 1 min(-1), respectively). Mutagenesis of F249 within the F-helix of CYP24A1 altered substrate binding and metabolism. Most notable, the hydrophobic to polar mutant F249T had a strong impact on lowering substrate-binding affinity and catalysis of the final C(23) oxidation sequence from 24,25,26,27-tetranor-1,23-dihydroxyvitamin D(3) to calcitroic acid. Two other hydrophobic 249 mutants (F249A and F249Y) also lowered substrate binding and expressed metabolic abnormalities that included the C(23)-oxidation defect observed with mutant F249T plus a similar defect involving an earlier pathway action for the C(24) oxidation of 1,24,25-trihydroxyvitamin D(3). Therefore, Phe-249 within the F-helix was demonstrated to have an important role in properly binding and aligning substrate in the CYP24A1 active site for C(23) and C(24) oxidation reactions.  相似文献   
132.
To find proteins with nucleotidase activity in Escherichia coli, purified unknown proteins were screened for the presence of phosphatase activity using the general phosphatase substrate p-nitrophenyl phosphate. Proteins exhibiting catalytic activity were then assayed for nucleotidase activity against various nucleotides. These screens identified the presence of nucleotidase activity in three uncharacterized E. coli proteins, SurE, YfbR, and YjjG, that belong to different enzyme superfamilies: SurE-like family, HD domain family (YfbR), and haloacid dehalogenase (HAD)-like superfamily (YjjG). The phosphatase activity of these proteins had a neutral pH optimum (pH 7.0-8.0) and was strictly dependent on the presence of divalent metal cations (SurE: Mn(2+) > Co(2+) > Ni(2+) > Mg(2+); YfbR: Co(2+) > Mn(2+) > Cu(2+); YjjG: Mg(2+) > Mn(2+) > Co(2+)). Further biochemical characterization of SurE revealed that it has a broad substrate specificity and can dephosphorylate various ribo- and deoxyribonucleoside 5'-monophosphates and ribonucleoside 3'-monophosphates with highest affinity to 3'-AMP. SurE also hydrolyzed polyphosphate (exopolyphosphatase activity) with the preference for short-chain-length substrates (P(20-25)). YfbR was strictly specific to deoxyribonucleoside 5'-monophosphates, whereas YjjG showed narrow specificity to 5'-dTMP, 5'-dUMP, and 5'-UMP. The three enzymes also exhibited different sensitivities to inhibition by various nucleoside di- and triphosphates: YfbR was equally sensitive to both di- and triphosphates, SurE was inhibited only by triphosphates, and YjjG was insensitive to these effectors. The differences in their sensitivities to nucleotides and their varied substrate specificities suggest that these enzymes play unique functions in the intracellular nucleotide metabolism in E. coli.  相似文献   
133.
To elucidate the general constraints imposed on the structure of the D and T-loops in functional tRNAs, active suppressor tRNAs were selected in vivo from a combinatorial tRNA gene library in which several nucleotide positions in these loops were randomized. Analysis of the nucleotide sequences of the selected clones demonstrates that most of them contain combination U54-A58 allowing the formation of the standard reverse-Hoogsteen base-pair 54-58 in the T-loop. With only one exception, all these clones fall into two groups, each characterized by a distinct sequence pattern. Analysis of these two groups has allowed us to suggest two different types of nucleotide arrangement in the DT region. The first type, the so-called specific purine trap, is found in 12 individual tRNA clones and represents a generalized version of the standard D-T loop interaction. It consists of purine 18 sandwiched between the reverse-Hoogsteen base-pair U54-A58 and purine 57. The identity of purine 18 is restricted by the specific base-pairing with nucleotide 55. Depending on whether nucleotide 55 is U or G, purine 18 should be, respectively, G or A. The second structural type, the so-called non-specific purine trap, corresponds to the nucleotide sequence pattern found in 16 individual tRNA clones and is described here for the first time. It consists of purine 18 sandwiched between two reverse-Hoogsteen base-pairs U54-A58 and A55-C57 and, unlike the specific purine trap, requires the T-loop to contain an extra eighth nucleotide. Since purine 18 does not form a base-pair in the non-specific purine trap, both purines, G18 and A18, fit to the structure equally well. The important role of both the specific and non-specific purine traps in the formation of the tRNA L-shape is discussed.  相似文献   
134.
Rapamycin, an inhibitor of the serine/threonine kinase mammalian target of rapamycin (mTOR), is a widely used immunosuppressive drug. Rapamycin affects the function of dendritic cells (DCs), antigen-presenting cells participating in the initiation of primary immune responses and the establishment of immunological memory. Voltage-gated K(+) (Kv) channels are expressed in and impact on the function of DCs. The present study explored whether rapamycin influences Kv channels in DCs. To this end, DCs were isolated from murine bone marrow and ion channel activity was determined by whole cell patch clamp. To more directly analyze an effect of mTOR on Kv channel activity, Kv1.3 and Kv1.5 were expressed in Xenopus oocytes with or without the additional expression of mTOR and voltage-gated currents were determined by dual-electrode voltage clamp. As a result, preincubation with rapamycin (0-50 nM) led to a gradual decline of Kv currents in DCs, reaching statistical significance within 6 h and 50 nM of rapamycin. Rapamycin accelerated Kv channel inactivation. Coexpression of mTOR upregulated Kv1.3 and Kv1.5 currents in Xenopus oocytes. Furthermore, mTOR accelerated Kv1.3 channel activation and slowed down Kv1.3 channel inactivation. In conclusion, mTOR stimulates Kv channels, an effect contributing to the immunomodulating properties of rapamycin in DCs.  相似文献   
135.
Virtual screening of a library of commercially available compounds versus the structure of Mycobacterium tuberculosis lumazine synthase identified 2-(2-oxo-1,2-dihydrobenzo[cd]indole-6-sulfonamido)acetic acid (9) as a possible lead compound. Compound 9 proved to be an effective inhibitor of M. tuberculosis lumazine synthase with a Ki of 70 μM. Lead optimization through replacement of the carboxymethylsulfonamide sidechain with sulfonamides substituted with alkyl phosphates led to a four-carbon phosphate 38 that displayed a moderate increase in enzyme inhibitory activity (Ki 38 μM). Molecular modeling based on known lumazine synthase/inhibitor crystal structures suggests that the main forces stabilizing the present benzindolone/enzyme complexes involve π–π stacking interactions with Trp27 and hydrogen bonding of the phosphates with Arg128, the backbone nitrogens of Gly85 and Gln86, and the side chain hydroxyl of Thr87.  相似文献   
136.
Herpesviruses enter cells by membrane fusion either at the plasma membrane or in endosomes, depending on the cell type. Glycoprotein B (gB) is a conserved component of the multiprotein herpesvirus fusion machinery and functions as a fusion protein, with two internal fusion loops, FL1 and FL2. We determined the crystal structures of the ectodomains of two FL1 mutants of herpes simplex virus type 1 (HSV-1) gB to clarify whether their fusion-null phenotypes were due to global or local effects of the mutations on the structure of the gB ectodomain. Each mutant has a single point mutation of a hydrophobic residue in FL1 that eliminates the hydrophobic side chain. We found that neither mutation affected the conformation of FL1, although one mutation slightly altered the conformation of FL2, and we conclude that the fusion-null phenotype is due to the absence of a hydrophobic side chain at the mutated position. Because the ectodomains of the wild-type and the mutant forms of gB crystallized at both low and neutral pH, we were able to determine the effect of pH on gB conformation at the atomic level. For viruses that enter cells by endocytosis, the low pH of the endosome effects major conformational changes in their fusion proteins, thereby promoting fusion of the viral envelope with the endosomal membrane. We show here that upon exposure of gB to low pH, FL2 undergoes a major relocation, probably driven by protonation of a key histidine residue. Relocation of FL2, as well as additional small conformational changes in the gB ectodomain, helps explain previously noted changes in its antigenic and biochemical properties. However, no global pH-dependent changes in gB structure were detected in either the wild-type or the mutant forms of gB. Thus, low pH causes local conformational changes in gB that are very different from the large-scale fusogenic conformational changes in other viral fusion proteins. We propose that these conformational changes, albeit modest, play an important functional role during endocytic entry of HSV.  相似文献   
137.
Glycoprotein B (gB) enables the fusion of viral and cell membranes during entry of herpesviruses. However, gB alone is insufficient for membrane fusion; the gH/gL heterodimer is also required. The crystal structure of the herpes simplex virus type 1 (HSV-1) gB ectodomain, gB730, has demonstrated similarities between gB and other viral fusion proteins, leading to the hypothesis that gB is a fusogen, presumably directly involved in bringing the membranes together by refolding from its initial or prefusion form to its final or postfusion form. The only available crystal structure likely represents the postfusion form of gB; the prefusion form has not yet been determined. Previously, a panel of HSV-1 gB mutants was generated by using random 5-amino-acid-linker insertion mutagenesis. Several mutants were unable to mediate cell-cell fusion despite being expressed on the cell surface. Mapping of the insertion sites onto the crystal structure of gB730 suggested that several insertions might not be accommodated in the postfusion form. Thus, we hypothesized that some insertion mutants were nonfunctional due to being “trapped” in a prefusion form. Here, we generated five insertion mutants as soluble ectodomains and characterized them biochemically. We show that the ectodomains of all five mutants assume conformations similar to that of the wild-type gB730. Four mutants have biochemical properties and overall structures that are indistinguishable from those of the wild-type gB730. We conclude that these mutants undergo only minor local conformational changes to relieve the steric strain resulting from the presence of 5 extra amino acids. Interestingly, one mutant, while able to adopt the overall postfusion structure, displays significant conformational differences in the vicinity of fusion loops, relative to wild-type gB730. Moreover, this mutant has a diminished ability to associate with liposomes, suggesting that the fusion loops in this mutant have decreased functional activity. We propose that these insertions cause a fusion-deficient phenotype not by preventing conversion of gB to a postfusion-like conformation but rather by interfering with other gB functions.Herpes simplex virus type 1 (HSV-1) is the prototype of the diverse herpesvirus family that includes many notable human pathogens (26). In addition to the icosahedral capsid and the tegument that surround its double-stranded DNA genome, herpesviruses have an envelope—an outer lipid bilayer—bearing a number of surface glycoproteins. During infection, HSV-1 must fuse its envelope with a cellular membrane in order to deliver the capsid into a target host cell. Among its viral glycoproteins, only glycoprotein C (gC), gB, gD, gH, and gL participate in this entry process, and only the last four are required for fusion (28). Although gD is found only in alphaherpesviruses, all herpesviruses encode gB, gH, and gL, which constitute their core fusion machinery. Of these three proteins, gB is the most highly conserved.We recently determined the crystal structure of a nearly full-length ectodomain of HSV-1 gB, gB730 (18). The crystal structure of the ectodomain of gB from Epstein-Barr virus, another herpesvirus, has also been subsequently determined (4). The two structures showed similarities between gB and other viral fusion proteins, in particular, G from an unrelated vesicular stomatitis virus (VSV) (25), leading to the hypothesis that gB is a fusogen, presumably directly involved in bringing the viral and host cell membranes together to enable their fusion. However, gB alone is known to be insufficient for membrane fusion; the gH/gL heterodimer is also required. This insufficiency raises the question of exactly how gB functions during viral entry. Answering this question is critical for understanding the complex mechanism that herpesviruses use to enter their host cells.In acting as a viral fusogen, gB must undergo dramatic conformational changes, refolding through a series of conformational intermediates from its initial, or prefusion form, to its final, or postfusion form (15). These conformational changes are not only necessary to bring the two membranes into proximity; they are also thought to provide the energy for the fusion process. The prefusion form corresponds to the protein present on the viral surface prior to initiation of fusion. The postfusion form represents the protein after fusion of the viral and host cell membranes. The available gB structure likely represents its postfusion form, since it shares more in common with the postfusion rather than the prefusion structure of vesicular stomatitis virus (VSV) G (3, 17). However, the prefusion form has not yet been characterized.Recently, a panel of gB mutants was generated by using random linker-insertion mutagenesis (21). Of these mutants, 16 were particularly interesting because they were nonfunctional in cell-cell fusion assays despite being expressed on the cell surface at levels that indicate proper folding for transport. These observations suggested that each insertion somehow interfered with gB function. Insertions in 12 of these mutants are located within the available structure of the gB ectodomain, which allowed Lin and Spear to analyze their locations (21).The most prominent examples of such nonfunctional mutants are two mutants with insertions after residues I185 or E187, henceforth referred to as “cavity mutants” because both I185 and E187 point into a cavity inside the gB trimer (Fig. 1B and D). Although this cavity might accommodate a single 5-amino-acid insertion, it “is not large enough to accommodate three 5-amino-acid insertions” (21) that would be present in the trimer (one insertion per protomer).Open in a separate windowFIG. 1.Location of the insertion sites in the sequence of gB and the structure of the postfusion form of its ectodomain. (A) Linear diagram of the full-length gB with functional domains highlighted (as in reference 18). Domain I is shown in cyan, domain II in green, domain III in yellow, domain IV in orange, domain V in red, and the disordered region between domains II and III in purple. Regions absent from the crystal structure of gB730 are shown in gray. Sequences in the region of 5-amino-acid insertions (residues 181 to 190 and residues 661 to 680) are shown in black. Arrows mark the locations of 5-amino-acid insertions, shown as red text. (B) Crystal structure of gB730 (18). Residues preceding the 5-amino-acid insertions in mutants studied here are shown as spheres colored by domain, consistent with panel A. Boxes delineate the hinge region, enlarged in panel C, and the cavity region, enlarged in panel D. (C) Close-up view of the hinge region shown in molecular surface representation, with residues 663 to 675 displayed as sticks. Hydrophobic residues are colored orange. Residues preceding the 5-amino-acid insertions in mutants studied here are labeled with asterisks; remaining labels correspond to additional hydrophobic residues in the 663-675 region. (D) Enlarged view of the cavity region. Residues that line the cavity and are not solvent exposed are colored magenta. Residue E187 of each protomer is colored teal and shown as spheres. Fusion loops for two protomers are marked with asterisks; the third pair of fusion loops lies behind the crystal structure and is not visible. Panels B, C, and D were made by using Pymol (http://www.pymol.org/).Five other nonfunctional mutants have insertions after residues D663, T665, V667, I671, or L673, respectively. We refer to them as “hinge mutants.” These residues lie in the region located between domains IV and V, which has been termed the hinge region because it may play an important role during the conformational transition from the prefusion to the postfusion form (17). Lin and Spear proposed that insertions following these residues “would likely affect hinge regions” (21), with the implication that they may prevent gB from refolding into the postfusion conformation. Our analysis suggested that insertions after these residues could, perhaps, be sterically accommodated in the structure but would probably be energetically unfavorable by causing several buried hydrophobic side chains in the 665-673 region, such as F670, I671, and L673, to become exposed (Fig. 1B and C).In light of these observations, we hypothesized that the insertion mutants are “trapped” in a prefusion form. We decided to test this hypothesis by determining whether the ectodomain of gB containing one of these insertion mutations is able to assume the conformation seen in the crystal structure of the wild-type gB ectodomain, which we are referring to as the likely postfusion conformation. For this purpose, we chose one cavity mutant, containing an insertion after E187, and four hinge mutants, containing insertions after T665, V667, I671, or L673, respectively. We chose to test four hinge mutants because structure analysis suggested to us that insertions following the respective residues might not affect the structure in precisely the same way. We expressed the soluble ectodomain of each mutant by using a baculovirus expression system and characterized the purified proteins by using biochemical and biophysical methods. Surprisingly, we found that the ectodomains of all five mutants assume a conformation similar to that of the wild-type gB ectodomain. The four hinge mutants had biochemical properties and overall three-dimensional structures that were indistinguishable from those of the wild-type gB ectodomain. We conclude that these mutants undergo only minor local conformational changes to relieve the steric strain resulting from the presence of 5 extra amino acids. Interestingly, the cavity mutant, while able to adopt the overall postfusion structure, still displayed significant conformational differences relative to wild-type gB. Because these conformational differences are in the vicinity of fusion loops, we conclude that the fusion loops in this mutant have decreased functional activity.  相似文献   
138.
Fructose-1,6-bisphosphatase (FBPase), a key enzyme of gluconeogenesis and photosynthetic CO2 fixation, catalyzes the hydrolysis of fructose 1,6-bisphosphate (FBP) to produce fructose 6-phosphate, an important precursor in various biosynthetic pathways. All known FBPases are metal-dependent enzymes, which are classified into five different classes based on their amino acid sequences. Eukaryotes are known to contain only the type-I FBPases, whereas all five types exist in various combinations in prokaryotes. Here we demonstrate that the uncharacterized protein YK23 from Saccharomyces cerevisiae efficiently hydrolyzes FBP in a metal-independent reaction. YK23 is a member of the histidine phosphatase (phosphoglyceromutase) superfamily with homologues found in all organisms. The crystal structure of the YK23 apo-form was solved at 1.75-Å resolution and revealed the core domain with the α/β/α-fold covered by two small cap domains. Two liganded structures of this protein show the presence of two phosphate molecules (an inhibitor) or FBP (a substrate) bound to the active site. FBP is bound in its linear, open conformation with the cleavable C1-phosphate positioned deep in the active site. Alanine replacement mutagenesis of YK23 identified six conserved residues absolutely required for activity and suggested that His13 and Glu99 are the primary catalytic residues. Thus, YK23 represents the first family of metal-independent FBPases and a second FBPase family in eukaryotes.  相似文献   
139.
Exogenous allogenic DNA as nucleosome-free fragments reaches main cellular compartments (cytoplasm, nucleus) of human dendritic cells and deposits in the nuclear interchromosomal space without visibly changing in linear size. The presence of such allogenic fragmented DNA in medium in which human dendritic cells are cultured produces an enhancement of their allostimulatory activity. This enhancement is comparable to that produced by the standard maturation stimulus lipopolysaccharide Escherichia coli.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号