首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   451篇
  免费   36篇
  2022年   4篇
  2020年   4篇
  2019年   6篇
  2018年   5篇
  2017年   8篇
  2016年   12篇
  2015年   12篇
  2014年   7篇
  2013年   19篇
  2012年   16篇
  2011年   18篇
  2010年   12篇
  2009年   12篇
  2008年   22篇
  2007年   19篇
  2006年   21篇
  2005年   19篇
  2004年   20篇
  2003年   14篇
  2002年   12篇
  2001年   14篇
  2000年   17篇
  1999年   19篇
  1998年   13篇
  1997年   6篇
  1996年   5篇
  1995年   7篇
  1994年   5篇
  1993年   4篇
  1992年   8篇
  1991年   8篇
  1990年   7篇
  1989年   7篇
  1988年   3篇
  1987年   5篇
  1986年   5篇
  1985年   4篇
  1984年   5篇
  1983年   6篇
  1982年   8篇
  1981年   4篇
  1980年   4篇
  1979年   6篇
  1976年   3篇
  1974年   3篇
  1971年   5篇
  1969年   5篇
  1967年   3篇
  1962年   3篇
  1921年   2篇
排序方式: 共有487条查询结果,搜索用时 15 毫秒
421.
SQSTM1/p62, as a major autophagy receptor, forms droplets that are critical for cargo recognition, nucleation, and clearance. p62 droplets also function as liquid assembly platforms to allow the formation of autophagosomes at their surfaces. It is unknown how p62-droplet formation is regulated under physiological or pathological conditions. Here, we report that p62-droplet formation is selectively blocked by inflammatory toxicity, which induces cleavage of p62 by caspase-6 at a novel cleavage site D256, a conserved site across human, mouse, rat, and zebrafish. The N-terminal cleavage product is relatively stable, whereas the C-terminal product appears undetectable. Using a variety of cellular models, we show that the p62 N-terminal caspase-6 cleavage product (p62-N) plays a dominant-negative role to block p62-droplet formation. In vitro p62 phase separation assays confirm this observation. Dominant-negative regulation of p62-droplet formation by caspase-6 cleavage attenuates p62 droplets dependent autophagosome formation. Our study suggests a novel pathway to modulate autophagy through the caspase-6–p62 axis under certain stress stimuli.Subject terms: Macroautophagy, Proteases  相似文献   
422.
The aqueous extract of the edible green microalgae Chlorella pyrenoidosa is of interest because of its immunostimulatory activity. Some components in the extract have been identified previously, namely a unique type of arabinogalactan and a galactofuran. Further fractionation of this extract was accomplished by treating the aqueous solution of the fraction precipitated by addition of 1.5vol of 95% ethanol with cetyltrimethylammonium bromide. The residue obtained by concentration of the supernatant was fractionated further by anion-exchange chromatography and size-exclusion chromatography on Sephadex G-100. Two fractions from the latter column were retained, of which one was a starch-like alpha-(1-->4)-linked d-glucan with some alpha-(1-->6) branches, and the other contained a starch plus a mixture of beta-(1-->2)-d-glucans. ESI mass spectrometry was used to show that the mixture contained both cyclic and linear beta-(1-->2)-d-glucans in a cyclic:linear ratio of 64:36, based on intensities of mass spectral peaks. For the cyclic beta-(1-->2)-d-glucans, ring sizes ranged from 18 to 35 monosaccharides with the ring containing 21 glucose units (54% of the cyclic glucans) being greater than three times more abundant than the next most abundant component, the ring containing 22 glucose units (15%). No rings containing 20 glucose units were present. This is the first observation of cyclic beta-(1-->2)-d-glucans in algae, as far as we are aware. For the linear beta-(1-->2)-d-glucans, the component containing 20 glucoses was most abundant (35% of the linear glucans), while the component containing 21 glucose units was the next most abundant (17%). These relatively low-molecular-weight glucans had low immunostimulatory activity.  相似文献   
423.
424.
425.
Benzene, toluene, ethylbenzene, and xylene are collectively known as BTEX which contributes to volatile environmental contaminants. This present study investigates the microbial degradation of BTEX in batch and continuous soil column experiments and its effects on soil matric potential. Batch degradation experiments were performed with different initial concentrations of BTEX using the BTEX tolerant culture isolated from petroleum-contaminated soil. In batch study, the degradation pattern for single substrate showed that xylene was degraded much faster than other compounds followed by ethylbenzene, toluene, and benzene with the highest μmax = 0.140 h?1 during initial substrate concentration of 100 mg L?1. Continuous degradation experiments were performed in a soil column with an inlet concentration of BTEX of about 2000 mg L?1 under unsaturated flow in anaerobic condition. BTEX degradation pattern was studied with time and the matric potential of the soil at different parts along the length of the column were determined at the end of the experiment. In continuous degradation study, BTEX compounds were degraded with different degradation pattern and an increase in soil matric potential was observed with an increase in depth from top to bottom in the column with applied suction head. It was found that column biodegradation contributed to 69.5% of BTEX reduction and the bacterial growth increased the soil matric potential of about 34% on an average along the column height. Therefore, this study proves that it is significant to consider soil matric potential in modeling fate and transport of BTEX in unsaturated soils.  相似文献   
426.

Cystathionine gamma-lyase (CSE)-derived hydrogen sulfide (H2S) plays an essential role in preserving cardiac functions. Angiotensin-converting enzyme 2 (ACE2) acts as the negative regulator of the renin-angiotensin system, exerting anti-oxidative stress and anti-inflammatory properties within the body. The interplays of CSE/H2S signaling and ACE2 in cardiac aging are unclear. In this study, the regulatory roles of H2S on ACE2 expression in mouse heart tissue and rat cardiomyocytes under different stress conditions were investigated. It was found that ACE2 protein level was lower in heart tissues from old mice (56-week-old) than young mice (8-week-old), and the knockout of CSE (CSE KO) induced moderate oxidative stress and further inhibited ACE2 protein level in mouse hearts at both young and old age. Incubation of rat cardiac cells (H9C2) with a low dose of H2O2 (50 µM) suppressed ACE2 protein level and induced cellular senescence, which was completely reversed by co-incubation with 30 µM NaHS (a H2S donor). Prolonged nutrient excess is an increased risk of heart disorders by causing metabolic dysfunction and cardiac remodeling. We further found high-fat diet feeding stimulated ACE2 expression and induced severe oxidative stress in CSE KO heart in comparison with wild-type heart. Lipid overload in H9C2 cells to mimic a status of nutrient excess also enhanced the expression of ACE2 protein and induced severe oxidative stress and cell senescence, which were significantly attenuated by the supplementation of exogenous H2S. Furthermore, the manipulation of ACE2 expression partially abolished the protective role of H2S against cellular senescence. These results demonstrate the dynamic roles of H2S in the maintenance of ACE2 levels under different levels of oxidative stress, pointing to the potential implications in targeting the CSE/H2S system for the interruption of aging and diabetes-related heart disorders.

  相似文献   
427.
428.
429.
A method is described for determining the minimum sample size for examining characters in animal or microbial populations.  相似文献   
430.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号