首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   539091篇
  免费   60914篇
  国内免费   386篇
  2018年   4448篇
  2016年   5937篇
  2015年   7983篇
  2014年   9349篇
  2013年   13485篇
  2012年   14918篇
  2011年   15328篇
  2010年   10171篇
  2009年   9590篇
  2008年   13891篇
  2007年   14173篇
  2006年   13719篇
  2005年   13201篇
  2004年   12981篇
  2003年   12600篇
  2002年   12287篇
  2001年   26920篇
  2000年   27038篇
  1999年   21080篇
  1998年   6853篇
  1997年   7286篇
  1996年   6930篇
  1995年   6236篇
  1994年   6142篇
  1993年   6251篇
  1992年   17074篇
  1991年   17003篇
  1990年   16175篇
  1989年   16005篇
  1988年   14832篇
  1987年   14043篇
  1986年   12772篇
  1985年   12843篇
  1984年   10360篇
  1983年   8883篇
  1982年   6625篇
  1981年   5974篇
  1980年   5691篇
  1979年   9800篇
  1978年   7547篇
  1977年   7069篇
  1976年   6400篇
  1975年   7217篇
  1974年   7783篇
  1973年   7632篇
  1972年   6758篇
  1971年   6320篇
  1970年   5653篇
  1969年   5471篇
  1968年   4967篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
993.
994.
995.
 Mammalian metallothioneins (MT) are known to maximally bind 12 copper ions in two six-Cu(I) ion clusters. Using electrospray ionization mass spectrometry of MT at pH 4.5, a four-Cu(I) ion cluster was observed intermediate to a fully formed six Cu(I) in a single domain or a fully formed Cu12MT species. The four-Cu(I) cluster was observed in both MT1 and MT3 isoforms. Addition of increasing amounts of Cu(I) to MT at pH 4.5 resulted in prominent ions whoses masses were consistent with apo-MT, Cu4MT, Cu6MT, and Cu12MT. The cooperativity of cluster formation was reduced at pH 2.5. Addition of Cu(I) to apo-MT at a reduced pH resulted in a series of ions consistent with Cu4 to Cu12MT species. However, formation of the tetracopper MT species remained cooperative at low pH, suggesting that this species is very stable. To determine whether the tetracopper cluster was formed in either the α or β domain, domain peptides of MT3 were used. Addition of Cu(I) to the apo β domain resulted in a peak consistent with the formation of a four-Cu(I) cluster. This is consistent with reports that Cu(I) ions bind preferentially to the β domain of MTs. Received: 2 June 1998 / Accepted: 21 August 1998  相似文献   
996.
A large bioreactor is heterogeneous with respect to concentration gradients of substrates fed to the reactor such as oxygen and growth limiting carbon source. Gradient formation will highly depend on the fluid dynamics and mass transfer capacity of the reactor, especially in the area in which the substrate is added. In this study, some production-scale (12 m3 bioreactor) conditions of a recombinant Escherichia coli process were imitated on a laboratory scale. From the large-scale cultivations, it was shown that locally high concentration of the limiting substrate fed to the process, in this case glucose, existed at the level of the feedpoint. The large-scale process was scaled down from: (i) mixing time experiments performed in the large-scale bioreactor in order to identify and describe the oscillating environment and (ii) identification of two distinct glucose concentration zones in the reactor. An important parameter obtained from mixing time experiments was the residence time in the feed zone of about 10 seconds. The size of the feed zone was estimated to 10%. Based on these observations the scale-down reactor with two compartments was designed. It was composed of one stirred tank reactor and an aerated plug flow reactor, in which the effect of oscillating glucose concentration on biomass yield and acetate formation was studied. Results from these experiments indicated that the lower biomass yield and higher acetate formation obtained on a large scale compared to homogeneous small-scale cultivations were not directly caused by the cell response to the glucose oscillation. This was concluded since no acetate was accumulated during scale-down experiments. An explanation for the differences in results between the two reactor scales may be a secondary effect of high glucose concentration resulting in an increased glucose metabolism causing an oxygen consumption rate locally exceeding the transfer rate. The results from pulse response experiments and glucose concentration measurements, at different locations in the reactor, showed a great consistency for the two feeding/pulse positions used in the large-scale bioreactor. Furthermore, measured periodicity from mixing data agrees well with expected circulation times for each impeller volume. Conclusions are drawn concerning the design of the scale-down reactor.  相似文献   
997.
In the present work, we described the fate of proventitious epicormic buds on the trunks of 40-year-old Quercus petraea trees and in parallel the vascular trace they produced in the wood. Our results show that small and large individual epicormic buds can survive as buds for 40 years and that both are composed of a terminal meristem and scales. Meristematic areas are detected in the scale axils of small buds; in addition to these meristems the large buds also have secondary bud primordia. The small buds are connected to the pith of the main stem by a unique trace, whereas the large buds are connected by one or multiple traces. A single trace might imply that the whole bud is still alive and multiple traces might indicate that the terminal meristem has died. In the latter case, each trace is connected to a secondary bud of the large bud. The buds found in a cluster are composed of a terminal meristem and scales with axillary meristems in the scale axils. A cluster is connected to the pith of a stem either by a unique trace when it seems to be the result of partial abscission of an epicormic shoot or multiple traces when it might have originated from an epicormic bud in which the terminal meristem has died. Whatever the type of the bud, the vascular trace in the bark is composed of a cambium, secondary xylem and parenchyma cells and the trace present in the wood had parenchyma cells with vestiges of secondary xylem. Each year, the vascular trace should be produced in the bark by the cambium of the tree but not by the bud itself. On 40-year-old Q. petraea, we observed a proliferation of epicormic buds and in parallel a multiplication of the number of vascular traces in the trunk, but the knots caused by the traces of epicormic buds in the wood, either as individuals or in clusters, are minor since their colours are only slightly darker than those of woody rays and they are less than 2 mm in diameter. The knots will appear when epicormic buds develop into shoots. Received: 30 March 1999 / Accepted: 09 June 1999  相似文献   
998.
999.
1000.
1. Metabolism is the fundamental process that powers life. Understanding what drives metabolism is therefore critical to our understanding of the ecology and behaviour of organisms in nature. 2. Metabolic rate generally scales with body size according to a power law. However, considerable unexplained variation in metabolic rate remains after accounting for body mass with scaling functions. 3. We measured resting metabolic rates (oxygen consumption) of 227 field‐caught wolf spiders. Then, we tested for effects of body mass, species, and body condition on metabolic rate. 4. Metabolic rate scales with body mass to the 0.85 power in these wolf spiders, and there are metabolic rate differences between species. After accounting for these factors, residual variation in metabolic rate is related to spider body condition (abdomen:cephalothorax ratio). Spiders with better body condition consume more oxygen. 5. These results indicate that recent foraging history is an important determinant of metabolic rate, suggesting that although body mass and taxonomic identity are important, other factors can provide helpful insights into metabolic rate variation in ecological communities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号