首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4718篇
  免费   451篇
  国内免费   2篇
  5171篇
  2024年   13篇
  2023年   60篇
  2022年   133篇
  2021年   272篇
  2020年   122篇
  2019年   152篇
  2018年   170篇
  2017年   150篇
  2016年   226篇
  2015年   371篇
  2014年   348篇
  2013年   360篇
  2012年   502篇
  2011年   436篇
  2010年   238篇
  2009年   179篇
  2008年   283篇
  2007年   253篇
  2006年   204篇
  2005年   199篇
  2004年   157篇
  2003年   117篇
  2002年   91篇
  2001年   21篇
  2000年   10篇
  1999年   9篇
  1998年   15篇
  1997年   8篇
  1996年   4篇
  1995年   7篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1989年   6篇
  1987年   4篇
  1986年   4篇
  1985年   2篇
  1984年   5篇
  1982年   5篇
  1980年   4篇
  1978年   2篇
  1976年   2篇
  1973年   2篇
  1933年   1篇
  1931年   1篇
  1929年   1篇
  1926年   1篇
  1912年   1篇
  1907年   1篇
排序方式: 共有5171条查询结果,搜索用时 15 毫秒
131.
Laboratory experiments were conducted to study nitrogen (N) regeneration by the heterotrophic marine dinoflagellate Oxyrrhis marina when ingesting phytoplankton prey of two different species and of two alternative carbon:nitrogen (C:N) ratios. Experiments were conducted in the presence of L-methionine sulfoximine (MSX) which acts as a glutamine synthetase inhibitor. Utilisation by phytoplankton of N regenerated by protozoans and other organisms drives secondary production in marine food webs. However, the rapid utilisation of this N by phytoplankton has previously hampered accurate assessment of the efficiency of protozoan N regeneration. This phenomenon is particularly problematic when the phytoplankton are nutrient stressed and most likely to rapidly utilise N. The use of MSX prevented significant utilisation by phytoplankton of protozoan regenerated N. Hence, by removing the normal pathway of N cycling, we were able to determine the N regeneration efficiency (NRE) of the protozoan. The results suggested that predator NRE could be explained in terms of the relative CN stoichiometry of prey and predator. Using a mathematical model we demonstrated that changing the method used to simulate the NRE of the protozoan trophic level has the potential to markedly modify the predicted dynamics of the simulated microbial food web.  相似文献   
132.
In this report, we examine the hypothesis that the drivers of latitudinal selection observed in the eastern US Drosophila melanogaster populations are reiterated within seasons in a temperate orchard population in Pennsylvania, USA. Specifically, we ask whether alleles that are apparently favoured in northern populations are also favoured early in the spring, and decrease in frequency from the spring to autumn with the population expansion. We use SNP data collected for 46 metabolic genes and 128 SNPs representing the central metabolic pathway and examine for the aggregate SNP allele frequencies whether the association of allele change with latitude and that with increasing days of spring–autumn season are reversed. Testing by random permutation, we observe a highly significant negative correlation between these associations that is consistent with this expectation. This correlation is stronger when we confine our analysis to only those alleles that show significant latitudinal changes. This pattern is not caused by association with chromosomal inversions. When data are resampled using SNPs for amino acid change the relationship is not significant but is supported when SNPs associated with cis-expression are only considered. Our results suggest that climate factors driving latitudinal molecular variation in a metabolic pathway are related to those operating on a seasonal level within populations.  相似文献   
133.
Extremophiles - YcfD from Escherichia coli is a homologue of the human ribosomal oxygenases NO66 and MINA53, which catalyse histidyl-hydroxylation of the 60S subunit and affect cellular...  相似文献   
134.
It is established that cardiac resynchronisation therapy (CRT) reduces mortality and hospitalisation and improves functional class in patients with NYHA class 3-4 heart failure, an ejection fraction of ≤ 35% and a QRS duration of ≥ 120ms. Recent updates in the American guidelines have expanded the demographic of patients in whom CRT may be appropriate. Here we present two cases of complex CRT; one with a conventional indication but occluded central veins and the second with a novel indication for CRT post cardiac transplant.  相似文献   
135.
Cell cycle checkpoints ensure that proliferation occurs only under permissive conditions, but their role in linking nutrient availability to cell division is incompletely understood. Protein folding within the endoplasmic reticulum (ER) is exquisitely sensitive to energy supply and amino acid sources because deficiencies impair luminal protein folding and consequently trigger ER stress signaling. Following ER stress, many cell types arrest within the G1 phase, although recent studies have identified a novel ER stress G2 checkpoint. Here, we report that ER stress affects cell cycle progression via two classes of signal: an early inhibition of protein synthesis leading to G2 delay involving CHK1 and a later induction of G1 arrest associated both with the induction of p53 target genes and loss of cyclin D1. We show that substitution of p53/47 for p53 impairs the ER stress G1 checkpoint, attenuates the recovery of protein translation, and impairs induction of NOXA, a mediator of cell death. We propose that cell cycle regulation in response to ER stress comprises redundant pathways invoked sequentially first to impair G2 progression prior to ultimate G1 arrest.  相似文献   
136.
137.
138.
Standardization of toxin preparations derived from Bacillus thuringiensis (Berliner) used in laboratory bioassays is critical for accurately assessing possible changes in the susceptibility of field populations of target pests. Different methods were evaluated to quantify Cry1Ab, the toxin expressed by 80% of the commercially available transgenic maize that targets the European corn borer, Ostrinia nubilalis (Hübner). We compared three methods of quantification on three different toxin preparations from independent sources: enzyme-linked immunosorbent assay (ELISA), sodium dodecyl sulfate-polyacrylamide gel electrophoresis and densitometry (SDS-PAGE/densitometry), and the Bradford assay for total protein. The results were compared to those obtained by immunoblot analysis and with the results of toxin bioassays against susceptible laboratory colonies of O. nubilalis. The Bradford method resulted in statistically higher estimates than either ELISA or SDS-PAGE/densitometry but also provided the lowest coefficients of variation (CVs) for estimates of the Cry1Ab concentration (from 2.4 to 5.4%). The CV of estimates obtained by ELISA ranged from 12.8 to 26.5%, whereas the CV of estimates obtained by SDS-PAGE/densitometry ranged from 0.2 to 15.4%. We standardized toxin concentration by using SDS-PAGE/densitometry, which is the only method specific for the 65-kDa Cry1Ab protein and is not confounded by impurities detected by ELISA and Bradford assay for total protein. Bioassays with standardized Cry1Ab preparations based on SDS-PAGE/densitometry showed no significant differences in LC50 values, although there were significant differences in growth inhibition for two of the three Cry1Ab preparations. However, the variation in larval weight caused by toxin source was only 4% of the total variation, and we conclude that standardization of Cry1Ab production and quantification by SDS-PAGE/densitometry may improve data consistency in monitoring efforts to identify changes in insect susceptibility to Cry1Ab.  相似文献   
139.
Global phosphorylation changes in plants in response to environmental stress have been relatively poorly characterized to date. Here we introduce a novel mass spectrometry-based label-free quantitation method that facilitates systematic profiling plant phosphoproteome changes with high efficiency and accuracy. This method employs synthetic peptide libraries tailored specifically as internal standards for complex phosphopeptide samples and accordingly, a local normalization algorithm, LAXIC, which calculates phosphopeptide abundance normalized locally with co-eluting library peptides. Normalization was achieved in a small time frame centered to each phosphopeptide to compensate for the diverse ion suppression effect across retention time. The label-free LAXIC method was further treated with a linear regression function to accurately measure phosphoproteome responses to osmotic stress in Arabidopsis. Among 2027 unique phosphopeptides identified and 1850 quantified phosphopeptides in Arabidopsis samples, 468 regulated phosphopeptides representing 497 phosphosites have shown significant changes. Several known and novel components in the abiotic stress pathway were identified, illustrating the capability of this method to identify critical signaling events among dynamic and complex phosphorylation. Further assessment of those regulated proteins may help shed light on phosphorylation response to osmotic stress in plants.Phosphorylation plays a pivotal role in the regulation of a majority of cellular processes via signaling transduction pathways. During the last decade, quantitative phosphoproteomics has become a powerful and versatile platform to profile signaling pathways at a system-wide scale. Multiple signaling networks in different organisms have been characterized through global phosphorylation profiling (13), which has evolved over the years with highly optimized procedures for sample preparation and phosphopeptide enrichment, high resolution mass spectrometry, and data analysis algorithms to identify and quantify thousands of phosphorylation events (48).Quantitative phosphoproteomics can be achieved mainly by two major techniques, stable isotope labeling and label-free quantitation. Isotope labeling prior to liquid chromatography-mass spectrometry (LC-MS)1 has been widely used, including metabolic labeling such as stable isotope labeling by amino acids in cell culture (SILAC), chemical labeling such as multiplexed isobaric tags for relative and absolute quantification (iTRAQ) and isotope-coded affinity tags (ICAT) (912). On the other hand, label-free quantitation has gained momentum in recent years (1315), as no additional chemistry or sample preparation steps are required. Compared with stable isotope labeling, label-free quantitation has higher compatibility with the source of the samples, the number of samples for comparison, and the instrument choice.Many label-free approaches, in particular to phosphoproteomics, are based on ion intensity (16, 17), but they are relatively error-prone because of run-to-run variations in LC/MS performance (18). In theory, such systematic errors can be corrected by spiking an internal standard into every sample to be compared. Several methods based on internal standard spiking have been reported so far. Absolute quantification peptide technology (AQUA) (19), for example, uses synthetic peptides with isotope labeling for absolute quantitation. For a global quantitative proteomics study, it is unrealistic to spike-in all reference peptides. Another labeling reference method, spike-in SILAC appears to be a promising technique to quantify the proteome in vivo with multiplex capability and it can be extended to clinical samples (20). One solution to large-scale quantitation without any isotope labeling is pseudo internal standard approach (21), which selects endogenous house-keeping proteins as the internal standard so that no spike-in reagent is required. However, finding a good pseudo internal standard remains a challenge for phosphoproteome samples. Spike-in experiments are an alternative way to improve normalization profile. Some internal standard peptides such as MassPREPTM (Waters) were already widely used. Other groups spiked an identical amount of standard protein into samples prior to protein digestion (2224). There are two major normalization procedures. In one approach, sample peptides were normalized to the total peak intensity of spike-in peptides (25). Alternatively, the digested peptides were compared at first and the normalization factor was determined in different ways such as the median (26) or average of ratios (27). However, spiking an identical amount of standard proteins into phosphoproteomic samples before protein digestion may not be compatible with phosphoproteomic analyses which typically require a phosphopeptide enrichment step. Spectral counting has been extensively applied in large sets of proteomic samples because of its simplicity but the method is often not reliable for the quantitation of phosphoproteins, which are typically identified by single phosphopeptides with few spectra (2830). Many software packages have been implemented to support the wide variety of those quantitation techniques, including commercial platforms such as Progenesis LC-MSTM, Mascot DistillerTM, PEAKS QTM, etc., as well as open-source software packages including MaxQuant (31), PEPPeR (32), Skyline (33), etc.In this study, we have devised a novel label-free quantitation strategy termed Library Assisted eXtracted Ion Chromatogram (LAXIC) for plant phosphoproteomic analyses with high accuracy and consistency (Fig. 1). The approach employs synthetic peptide libraries as the internal standard. These peptides were prepared to have proper properties for quality control assessments and mass spectrometric measurements. In particular, peptides were designed to elute sequentially over an entire LC gradient and to have suitable ionization efficiency and m/z values within the normally scanned mass range. Local normalization of peak intensity is performed using Loess Procedure, a data treatment adopted from cDNA microarray data analysis (34). To monitor the diverse ion suppression effect across retention time, the local normalization factors (LNFs) are determined by internal standard pairs in individual time windows. Finally, samples will be quantified with LNFs in order to correct variance of LC-MS conditions. This quantification occurs in a small time frame centered to each target peptide.Open in a separate windowFig. 1.Work flow for the LAXIC strategy to quantify the phosphorylation change in response to osmotic stress. A, Schematic representation of the LAXIC algorithm. First, all the chromatographic peaks were aligned and the ratios were calculated. Second, the normalization factors which equal to ratios of library peptide peaks between MS runs were chosen to construct normalization curve. Third, sample peptide peak ratios were normalized against predicted normalization factor corresponding to certain retention time. B, Schematic representation of quantitative phosphoproteomics. Plants either treated with mannitol or PBS were lysed and mixed proportionally at first. Following peptide digestion and enrichment, phosphopeptides were identified and further quantified through LAXIC incorporated with self-validating process using thelinear regression model to analyze the fold change (fold), linearity (R2) and accuracy (%Acc).Water deficit and salinity causes osmotic stress, which is a major environmental factor limiting plant agricultural productivity. Osmotic stress rapidly changes the metabolism, gene expression and development of plant cells by activating several signaling pathways. Several protein kinases have been characterized as key components in osmotic stress signaling. Arabidopsis histidine kinase AHK1 can complement the histidine kinase mutant yeast, which can act as the osmosensor in yeast (35). Overexpression of AHK1 gene increases the drought tolerance of transgenic plants in Arabidopsis (36). Similar to yeast, the MAPK kinase cascade is also involved in osmotic stress response in plants. It is reported that AtMPK3, AtMPK6, and tobacco SIPK can be activated by NaCl or mannitol, and play positive roles in osmotic signaling (37, 38). MKK7 and MKKK20 may act as the up-stream kinase in the kinase cascade (39). Involvement of some calcium-dependent protein kinases, such as AtCPK21, AtCPK6, and OsCPK7 (CDPK) in osmotic stress signaling has also been reported (4042). Another kinase family, SNF1-related protein kinase (SnRK) 2, also participates in osmotic stress response. In Arabidopsis, there are ten members in the SnRK2 family. Five from the ten SnRK2s, SnRK2, 3, 6, 7, and 8, can be activated by abscisic acid (ABA) and play central roles in ABA-receptor coupled signaling (43, 44). Furthermore, all SnRK2s except SnRK2.9 can be activated by NaCl or mannitol treatment (43). The decuple mutant of SnRK2 showed a strong osmotic hypersensitive phenotype (45). It is proposed that protein kinases including MAPK and SnRK2s have a critical function in osmotic stress (46), but the detailed mechanism and downstream substrates or target signal components are not yet clarified. We applied, therefore, the LAXIC approach with a self-validating method (47) to profile the osmotic stress-dependent phosphoproteome in Arabidopsis by quantifying phosphorylation events before and after mannitol treatment. Among a total of over 2000 phosphopeptides, more than 400 of them are dependent on osmotic stress. Those phosphoproteins are present on enzymes participating in signaling networks that are involved in many processes such as signal transduction, cytoskeleton development, and apoptosis. Overall, LAXIC represents a powerful tool for label-free quantitative phosphoproteomics.  相似文献   
140.
EB Cohen  FR Moore  RA Fischer 《PloS one》2012,7(7):e41818
Movement patterns during songbird migration remain poorly understood despite their expected fitness consequences in terms of survival, energetic condition and timing of migration that will carry over to subsequent phases of the annual cycle. We took an experimental approach to test hypotheses regarding the influence of habitat, energetic condition, time of season and sex on the hour-by-hour, local movement decisions of a songbird during spring stopover. To simulate arrival of nocturnal migrants at unfamiliar stopover sites, we translocated and continuously tracked migratory red-eyed vireos (Vireo olivaceus) throughout spring stopover with and without energetic reserves that were released in two replicates of three forested habitat types. Migrants moved the most upon release, during which time they selected habitat characterized by greater food abundance and higher foraging attack rates. Presumably under pressure to replenish fuel stores necessary to continue migration in a timely fashion, migrants released in poorer energetic condition moved faster and further than migrants in better condition and the same pattern was true for migrants released late in spring relative to those released earlier. However, a migrant's energetic condition had less influence on their behavior when they were in poor quality habitat. Movement did not differ between sexes. Our study illustrates the importance of quickly finding suitable habitat at each stopover site, especially for energetically constrained migrants later in the season. If an initial period prior to foraging were necessary at each stop along a migrant's journey, non-foraging periods would cumulatively result in a significant energetic and time cost to migration. However, we suggest behavior during stopover is not solely a function of underlying resource distributions but is a complex response to a combination of endogenous and exogenous factors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号