首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2216篇
  免费   284篇
  2021年   33篇
  2020年   24篇
  2019年   18篇
  2018年   17篇
  2017年   26篇
  2016年   50篇
  2015年   69篇
  2014年   59篇
  2013年   89篇
  2012年   104篇
  2011年   103篇
  2010年   70篇
  2009年   73篇
  2008年   114篇
  2007年   96篇
  2006年   104篇
  2005年   91篇
  2004年   103篇
  2003年   88篇
  2002年   87篇
  2001年   88篇
  2000年   66篇
  1999年   59篇
  1998年   30篇
  1997年   15篇
  1996年   27篇
  1995年   25篇
  1994年   19篇
  1993年   28篇
  1992年   46篇
  1991年   36篇
  1990年   48篇
  1989年   35篇
  1988年   29篇
  1987年   31篇
  1986年   29篇
  1985年   26篇
  1984年   36篇
  1983年   31篇
  1982年   26篇
  1980年   23篇
  1979年   21篇
  1978年   23篇
  1977年   18篇
  1976年   29篇
  1975年   22篇
  1974年   21篇
  1973年   19篇
  1972年   14篇
  1970年   14篇
排序方式: 共有2500条查询结果,搜索用时 15 毫秒
191.
192.
Amitrole, a widely used herbicide, is an animal carcinogen and an inducer of cell transformation. However, it is inactive as a mutagen in bacterial test systems. Thus, it has been suggested that amitrole is a non-mutagenic carcinogen. Over the dose range that induces morphological transformation of Syrian hamster embryo cells in culture, amitrole induced gene mutations at the Na+/K+ ATPase and hypoxanthine phosphoribosyl transferase loci measured concomitantly in the same cells. These results indicate that amitrole may act via a mutational mechanism.  相似文献   
193.
194.
Bone samples from several vertebrates were collected from the Ziegler Reservoir fossil site, in Snowmass Village, Colorado, and processed for proteomics analysis. The specimens come from Pleistocene megafauna Bison latifrons, dating back ∼120,000 years. Proteomics analysis using a simplified sample preparation procedure and tandem mass spectrometry (MS/MS) was applied to obtain protein identifications. Several bioinformatics resources were used to obtain peptide identifications based on sequence homology to extant species with annotated genomes. With the exception of soil sample controls, all samples resulted in confident peptide identifications that mapped to type I collagen. In addition, we analyzed a specimen from the extinct B. latifrons that yielded peptide identifications mapping to over 33 bovine proteins. Our analysis resulted in extensive fibrillar collagen sequence coverage, including the identification of posttranslational modifications. Hydroxylysine glucosylgalactosylation, a modification thought to be involved in collagen fiber formation and bone mineralization, was identified for the first time in an ancient protein dataset. Meta-analysis of data from other studies indicates that this modification may be common in well-preserved prehistoric samples. Additional peptide sequences from extracellular matrix (ECM) and non-ECM proteins have also been identified for the first time in ancient tissue samples. These data provide a framework for analyzing ancient protein signatures in well-preserved fossil specimens, while also contributing novel insights into the molecular basis of organic matter preservation. As such, this analysis has unearthed common posttranslational modifications of collagen that may assist in its preservation over time. The data are available via ProteomeXchange with identifier PXD001827.During the last decade, paleontology and taphonomy (the study of decaying organisms over time and the fossilization processes) have begun to overlap with the field of proteomics to shed new light on preserved organic matter in fossilized bones (14). These bones represent a time capsule of ancient biomolecules, owing to their natural resistance to post mortem decay arising from a unique combination of mechanical, structural, and chemical properties (47).Although bones can be cursorily described as a composite of collagen (protein) and hydroxyapatite (mineral), fossilized bones undergo three distinct diagenesis pathways: (i) chemical deterioration of the organic phase; (ii) chemical deterioration of the mineral phase; and (iii) (micro)biological attack of the composite (6). In addition, the rate of these degradation pathways are affected by temperature, as higher burial temperatures have been shown to accelerate these processes (6, 8). Though relatively unusual, the first of these three pathways results in a slower deterioration process, which is more generally mitigated under (6) specific environmental constraints, such as geochemical stability (stable temperature and acidity) that promote bone mineral preservation. Importantly, slower deterioration results in more preserved biological materials that are more amenable to downstream analytical assays. One example of this is the controversial case of bone and soft-tissue preservation from the Cretaceous/Tertiary boundary (922). In light of these and other studies of ancient biomolecules, paleontological models have proposed that organic biomolecules in ancient samples, such as collagen sequences from the 80 million-year-(my)-old Campanian hadrosaur, Brachylophosaurus canadensis (16) or 68-my-old Tyrannosaurus rex, might be protected by the microenvironment within bones. Such spaces are believed to form a protective shelter that is able to reduce the effects of diagenetic events. In addition to collagen, preserved biomolecules include blood proteins, cellular lipids, and DNA (4, 5). While the maximum estimated lifespan of DNA in bones is ∼20,000 years (ky) at 10 °C, bone proteins have an even longer lifespan, making them an exceptional target for analysis to gain relevant insights into fossilized samples (6). Indeed, the survival of collagen, which is considered to be the most abundant bone protein, is estimated to be in the range 340 ky at 20 °C. Similarly, osteocalcin, the second-most abundant bone protein, can persist for ≈45 ky at 20 °C, thus opening an unprecedented analytical window to study extremely old samples (2, 4, 23).Although ancient DNA amplification and sequencing can yield interesting clues and potential artifacts from contaminating agents (7, 2428), the improved preservation of ancient proteins provides access to a reservoir of otherwise unavailable genetic information for phylogenetic inference (25, 29, 30). In particular, mass spectrometry (MS)-based screening of species-specific collagen peptides has recently been used as a low-cost, rapid alternative to DNA sequencing for taxonomic attribution of morphologically unidentifiable small bone fragments and teeth stemming from diverse archeological contexts (25, 3133).For over five decades, researchers have presented biochemical evidence for the existence of preserved protein material from ancient bone samples (3436). One of the first direct measurements was by amino acid analysis, which showed that the compositional profile of ancient samples was consistent with collagens in modern bone samples (3739). Preservation of organic biomolecules, either from bone, dentin, antlers, or ivory, has been investigated by radiolabeled 14C fossil dating (40) to provide an avenue of delineating evolutionary divergence from extant species (3, 41, 42). It is also important to note that these parameters primarily depend on ancient bone collagen as the levels remain largely unchanged (a high percentage of collagen is retained, as gleaned by laboratory experiments on bone taphonomy (6)). Additionally, antibody-based immunostaining methods have given indirect evidence of intact peptide amide bonds (4345) to aid some of the first evidence of protein other than collagen and osteocalcin in ancient mammoth (43) and human specimens (46).In the past, mass spectrometry has been used to obtain MS signals consistent with modern osteocalcin samples (2, 47), and eventually postsource decay peptide fragmentation was used to confirm the identification of osteocalcin in fossil hominids dating back ∼75 ky (48). More recently, modern “bottom-up” proteomic methods were applied to mastodon and T. rex samples (10), complementing immunohistochemistry evidence (13, 17). The results hinted at the potential of identifying peptides from proteolytic digest of well-preserved bone samples. This work also highlighted the importance of minimizing sources of protein contamination and adhering to data publication guidelines (20, 21). In the past few years, a very well-preserved juvenile mammoth referred to as Lyuba was discovered in the Siberian permafrost and analyzed using high-resolution tandem mass spectrometry (29). This study was followed with a report by Wadsworth and Buckley (30) describing the analysis of proteins from 19 bovine bone samples spanning 4 ky to 1.5 my. Both of these groups reported the identification of additional collagen and noncollagen proteins.Recently, a series of large extinct mammal bones were unearthed at a reservoir near Snowmass Village, Colorado, USA (49, 50). The finding was made during a construction project at the Ziegler Reservoir, a fossil site that was originally a lake formed at an elevation of ∼2,705 m during the Bull Lake glaciations ∼140 ky ago (49, 51). The original lake area was ∼5 hectares in size with a total catchment of ∼14 hectares and lacked a direct water flow inlet or outlet. This closed drainage basin established a relatively unique environment that resulted in the exceptional preservation of plant material, insects (52), and vertebrate bones (49). In particular, a cranial specimen from extinct Bison latifrons was unearthed from the Biostratigraphic Zone/Marine Oxygen Isotope Stage (MIS) 5d, which dates back to ∼120 ky (53, 54).Here, we describe the use of paleoproteomics, for the identification of protein remnants with a focus on a particularly unique B. latifrons cranial specimen found at the Ziegler site. We developed a simplified sample processing approach that allows for analysis of low milligram quantities of ancient samples for peptide identification. Our method avoids the extensive demineralization steps of traditional protocols and utilizes an acid labile detergent to allow for efficient extraction and digestion without the need for additional sample cleanup steps. This approach was applied to a specimen from B. latifrons that displayed visual and mechanical properties consistent with the meninges, a fibrous tissue that lines the cranial cavity. Bioinformatics analysis revealed the presence of a recurring glycosylation signature in well-preserved collagens. In particular, the presence of glycosylated hydroxylysine residues was identified as a unique feature of bone fossil collagen, as gleaned through meta-analyses of raw data from previous reports on woolly mammoth (Mammuthus primigenius) and bovine samples (29, 30). The results from these meta-analyses indicate a common, unique feature of collagen that coincides with, and possibly contributes to its preservation.  相似文献   
195.
Peripheral infection by Trypanosoma brucei, the protozoan responsible for sleeping sickness, activates lymphocytes, and, at later stages, causes meningoencephalitis. We have videoed the cortical meninges and superficial parenchyma of C56BL/6 reporter mice infected with T.b.brucei. By use of a two-photon microscope to image through the thinned skull, the integrity of the tissues was maintained. We observed a 47-fold increase in CD2+ T cells in the meninges by 12 days post infection (dpi). CD11c+ dendritic cells also increased, and extravascular trypanosomes, made visible either by expression of a fluorescent protein, or by intravenous injection of furamidine, appeared. The likelihood that invasion will spread from the meninges to the parenchyma will depend strongly on whether the trypanosomes are below the arachnoid membrane, or above it, in the dura. Making use of optical signals from the skull bone, blood vessels and dural cells, we conclude that up to 40 dpi, the extravascular trypanosomes were essentially confined to the dura, as were the great majority of the T cells. Inhibition of T cell activation by intraperitoneal injection of abatacept reduced the numbers of meningeal T cells at 12 dpi and their mean speed fell from 11.64 ± 0.34 μm/min (mean ± SEM) to 5.2 ± 1.2 μm/min (p = 0.007). The T cells occasionally made contact lasting tens of minutes with dendritic cells, indicative of antigen presentation. The population and motility of the trypanosomes tended to decline after about 30 dpi. We suggest that the lymphocyte infiltration of the meninges may later contribute to encephalitis, but have no evidence that the dural trypanosomes invade the parenchyma.  相似文献   
196.
In many seabird studies, single annual proxies of prey abundance have been used to explain variability in breeding performance, but much more important is probably the timing of prey availability relative to the breeding season when energy demand is at a maximum. Until now, intraseasonal variation in prey availability has been difficult to quantify in seabirds. Using a state‐of‐the‐art ocean drift model of larval cod Gadus morhua, an important constituent of the diet of common guillemots Uria aalge in the southwestern Barents Sea, we were able to show clear, short‐term correlations between food availability and measurements of the stress hormone corticosterone (CORT) in parental guillemots over a 3‐year period (2009–2011). The model allowed the extraction of abundance and size of cod larvae with very high spatial (4 km) and temporal resolutions (1 day) and showed that cod larvae from adjacent northern spawning grounds in Norway were always available near the guillemot breeding colony while those from more distant southerly spawning grounds were less frequent, but larger. The latter arrived in waves whose magnitude and timing, and thus overlap with the guillemot breeding season, varied between years. CORT levels in adult guillemots were lower in birds caught after a week with high frequencies of southern cod larvae. This pattern was restricted to the two years (2009 and 2010) in which southern larvae arrived before the end of the guillemot breeding season. Any such pattern was masked in 2011 by already exceptionally high numbers of cod larvae in the region throughout chick‐rearing period. The findings suggest that CORT levels in breeding birds increase when the arrival of southern sizable larvae does not match the period of peak energy requirements during breeding.  相似文献   
197.
Magnetic resonance imaging (MRI) has long been used clinically and experimentally as a diagnostic tool to obtain three-dimensional, high-resolution images of deep tissues. These images are enhanced by the administration of contrast agents such as paramagnetic Gd(III) complexes. Herein, we describe the preparation of a series of multimodal imaging agents in which paramagnetic Gd(III) complexes are conjugated to a fluorescent tetrapyrrole, namely, a porphyrazine (pz). Zinc metalated pzs conjugated to one, four, or eight paramagnetic Gd(III) complexes are reported. Among these conjugates, Zn-Pz-8Gd(III) exhibits an ionic relaxivity four times that of the monomeric Gd(III) agent, presumably because of increased molecular weight and a molecular relaxivity that is approximately thirty times larger, while retaining the intense electronic absorption and emission of the unmodified pz. Unlike current clinical MR agents, Zn-Pz-1Gd(III) is taken up by cells. This probe demonstrates intracellular fluorescence by confocal microscopy and provides significant contrast enhancement in MR images, as well as marked phototoxicity in assays of cellular viability. These results suggest that pz agents possess a new potential for use in cancer imaging by both MRI and near-infrared (NIR) fluorescence, while acting as a platform for photodynamic therapy.  相似文献   
198.
Trypanosoma brucei, the parasite that causes human African trypanosomiasis, is auxotrophic for purines and has specialist nucleoside transporters to import these metabolites. In particular, the P2 aminopurine transporter can also selectively accumulate melamine derivatives. In this Letter, we report the coupling of the melamine moiety to 2-hydroxy APA, a potent ornithine decarboxylase inhibitor, with the aim of selectively delivering this compound to the parasite. The best compound described here shows an increased in vitro trypanocidal activity compared with the parent.  相似文献   
199.
Fully mycoheterotrophic plants offer a fascinating system for studying phylogenetic associations and dynamics of symbiotic specificity between hosts and parasites. These plants frequently parasitize mutualistic mycorrhizal symbioses between fungi and trees. Corallorhiza striata is a fully mycoheterotrophic, North American orchid distributed from Mexico to Canada, but the full extent of its fungal associations and specificity is unknown. Plastid DNA (orchids) and ITS (fungi) were sequenced for 107 individuals from 42 populations across North America to identify C. striata mycobionts and test hypotheses on fungal host specificity. Four largely allopatric orchid plastid clades were recovered, and all fungal sequences were most similar to ectomycorrhizal Tomentella (Thelephoraceae), nearly all to T. fuscocinerea. Orchid-fungal gene trees were incongruent but nonindependent; orchid clades associated with divergent sets of fungi, with a clade of Californian orchids subspecialized toward a narrow Tomentella fuscocinerea clade. Both geography and orchid clades were important determinants of fungal association, following a geographic mosaic model of specificity on Tomentella fungi. These findings corroborate patterns described in other fully mycoheterotrophic orchids and monotropes, represent one of the most extensive plant-fungal genetic investigations of fully mycoheterotrophic plants, and have conservation implications for the >400 plant species engaging in this trophic strategy worldwide.  相似文献   
200.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号