首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   469篇
  免费   34篇
  2023年   4篇
  2022年   10篇
  2021年   8篇
  2020年   3篇
  2019年   8篇
  2018年   12篇
  2017年   7篇
  2016年   8篇
  2015年   17篇
  2014年   31篇
  2013年   37篇
  2012年   43篇
  2011年   46篇
  2010年   21篇
  2009年   16篇
  2008年   34篇
  2007年   30篇
  2006年   33篇
  2005年   25篇
  2004年   23篇
  2003年   21篇
  2002年   22篇
  2000年   5篇
  1999年   11篇
  1998年   8篇
  1997年   5篇
  1996年   5篇
  1995年   1篇
  1994年   2篇
  1991年   2篇
  1988年   1篇
  1987年   1篇
  1981年   1篇
  1970年   2篇
排序方式: 共有503条查询结果,搜索用时 46 毫秒
171.
The Fragile X mental retardation-1 (Fmr1) gene encodes a multifunctional protein, FMRP, with intrinsic RNA binding activity. We have developed an approach, antibody-positioned RNA amplification (APRA), to identify the RNA cargoes associated with the in vivo configured FMRP messenger ribonucleoprotein (mRNP) complex. Using APRA as a primary screen, putative FMRP RNA cargoes were assayed for their ability to bind directly to FMRP using traditional methods of assessing RNA-protein interactions, including UV-crosslinking and filter binding assays. Approximately 60% of the APRA-defined mRNAs directly associate with FMRP. By examining a subset of these mRNAs and their encoded proteins in brain tissue from Fmr1 knockout mice, we have observed that some of these cargoes as well as the proteins they encode show discrete changes in abundance and/or differential subcellular distribution. These data are consistent with spatially selective regulation of multiple biological pathways by FMRP.  相似文献   
172.
Macroautophagy was recently shown to regulate both lymphocyte biology and innate immunity. In this study we sought to determine whether a deregulation of autophagy was linked to the development of autoimmunity. Genome-wide association studies have pointed out nucleotide polymorphisms that can be associated with systemic lupus erythematosus, but the potential role of autophagy in the initiation and/or development of this syndrome is still unknown. Here, we provide first clues of macroautophagy deregulation in lupus. By the use of LC3 conversion assays and electron microscopy experiments, we observed that T cells from two distinct lupus-prone mouse models, i.e., MRLlpr/lpr and (NZB/NZW)F1, exhibit high loads of autophagic compartments compared with nonpathologic control CBA/J and BALB/c mice. Unlike normal mice, autophagy increases with age in murine lupus. In vivo lipopolysaccharide stimulation in CBA/J control mice efficiently activates T lymphocytes but fails to upregulate formation of autophagic compartments in these cells. This argues against a deregulation of autophagy in lupus T cells solely resulting from an acute inflammation injury. Autophagic vacuoles quantified by electron microscopy are also found to be significantly more frequent in T cells from lupus patients compared with healthy controls and patients with non-lupus autoimmune diseases. This elevated number of autophagic structures is not distributed homogeneously and appears to be more pronounced in certain T cells. These results suggest that autophagy could regulate the survival of autoreactive T cell during lupus, and could thus lead to design new therapeutic options for lupus.  相似文献   
173.
174.
Herpesvirus entry is a complicated process involving multiple virion glycoproteins and culminating in membrane fusion. Glycoprotein conformation changes are likely to play key roles. Studies of recombinant glycoproteins have revealed some structural features of the virion fusion machinery. However, how the virion glycoproteins change during infection remains unclear. Here using conformation-specific monoclonal antibodies we show in situ that each component of the Murid Herpesvirus-4 (MuHV-4) entry machinery--gB, gH/gL and gp150--changes in antigenicity before tegument protein release begins. Further changes then occurred upon actual membrane fusion. Thus virions revealed their final fusogenic form only in late endosomes. The substantial antigenic differences between this form and that of extracellular virions suggested that antibodies have only a limited opportunity to block virion membrane fusion.  相似文献   
175.
176.
Resistance (R) genes protect plants very effectively from disease, but many of them are rapidly overcome when present in widely grown cultivars. To overcome this lack of durability, strategies that increase host resistance diversity have been proposed. Among them is the use of multilines composed of near-isogenic lines (NILs) containing different disease resistance genes. In contrast to classical R-gene introgression by recurrent backcrossing, a transgenic approach allows the development of lines with identical genetic background, differing only in a single R gene. We have used alleles of the resistance locus Pm3 in wheat, conferring race-specific resistance to wheat powdery mildew (Blumeria graminis f. sp. tritici), to develop transgenic wheat lines overexpressing Pm3a, Pm3c, Pm3d, Pm3f or Pm3g. In field experiments, all tested transgenic lines were significantly more resistant than their respective nontransformed sister lines. The resistance level of the transgenic Pm3 lines was determined mainly by the frequency of virulence to the particular Pm3 allele in the powdery mildew population, Pm3 expression levels and most likely also allele-specific properties. We created six two-way multilines by mixing seeds of the parental line Bobwhite and transgenic Pm3a, Pm3b and Pm3d lines. The Pm3 multilines were more resistant than their components when tested in the field. This demonstrates that the difference in a single R gene is sufficient to cause host-diversity effects and that multilines of transgenic Pm3 wheat lines represent a promising strategy for an effective and sustainable use of Pm3 alleles.  相似文献   
177.
In the lesser-spotted dogfish (Scyliorhinus canicula), spermatogenesis takes place within spermatocysts made up of Sertoli cells associated with stage-synchronized germ cells. As shown in testicular cross sections, cysts radiate in maturational order from the germinative area, where they are formed, to the opposite margin of the testis, where spermiation occurs. In the germinative zone, which is located in a specific area between the tunica albuginea of the testis and the dorsal testicular vessel, individual large spermatogonia are surrounded by elongated somatic cells. The aim of this study has been to define whether these spermatogonia share characteristics with spermatogonial stem cells described in vertebrate and non-vertebrate species. We have studied their ultrastructure and their mitotic activity by 5′-bromo-2′-deoxyuridine (BrdU) incorporation and proliferating cell nuclear antigen (PCNA) immunodetection. Additionally, immunodetection of c-Kit receptor, a marker of differentiating spermatogonia in rodents, and of α- and β-spectrins, as constituents of the spectrosome and the fusome, has been performed. Ultrastructurally, nuclei of stage I spermatogonia present the same mottled aspect in dogfish as undifferentiated spermatogonia nuclei in rodents. Moreover, intercellular bridges are not observed in dogfish spermatogonia, although they are present in stage II spermatogonia. BrdU and PCNA immunodetection underlines their low mitotic activity. The presence of a spectrosome-like structure, a cytological marker of the germline stem cells in Drosophila, has been observed. Our results constitute the first step in the study of spermatogonial stem cells and their niche in the dogfish. G.L. is supported by a CIFRE grant (ANRT and C.RIS Pharma).  相似文献   
178.
O-Linked N-acetylglucosaminylation (O-GlcNAcylation) (or O-linked N-acetylglucosamine (O-GlcNAc)) is an abundant and reversible glycosylation type found within the cytosolic and the nuclear compartments. We have described previously the sudden O-GlcNAcylation increase occurring during the Xenopus laevis oocyte G(2)/M transition, and we have demonstrated that the inhibition of O-GlcNAc-transferase (OGT) blocked this process, showing that the O-GlcNAcylation dynamism interferes with the cell cycle progression. In this work, we identified proteins that are O-GlcNAc-modified during the G(2)/M transition. Because of a low expression of O-GlcNAcylation in Xenopus oocyte, classical enrichment of O-GlcNAc-bearing proteins using O-GlcNAc-directed antibodies or wheat germ agglutinin lectin affinity were hard to apply, albeit these techniques allowed the identification of actin and erk2. Therefore, another strategy based on an in vitro enzymatic labeling of O-GlcNAc residues with azido-GalNAc followed by a chemical addition of a biotin alkyne probe and by enrichment of the tagged proteins on avidin beads was used. Bound proteins were analyzed by nano-LC-nano-ESI-MS/MS allowing for the identification of an average of 20 X. laevis oocyte O-GlcNAcylated proteins. In addition to actin and beta-tubulin, we identified metabolic/functional proteins such as PP2A, proliferating cell nuclear antigen, transitional endoplasmic reticulum ATPase, aldolase, lactate dehydrogenase, and ribosomal proteins. This labeling allowed for the mapping of a major O-GlcNAcylation site within the 318-324 region of beta-actin. Furthermore immunofluorescence microscopy enabled the direct visualization of O-GlcNAcylation and OGT on the meiotic spindle as well as the observation that chromosomally bound proteins were enriched in O-GlcNAc and OGT. The biological relevance of this post-translational modification both on microtubules and on chromosomes remains to be determined. However, the mapping of the O-GlcNAcylation sites will help to underline the function of this post-translational modification on each identified protein and will provide a better understanding of O-GlcNAcylation in the control of the cell cycle.  相似文献   
179.
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号