首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6897篇
  免费   594篇
  国内免费   2篇
  7493篇
  2022年   43篇
  2021年   80篇
  2020年   56篇
  2019年   56篇
  2018年   90篇
  2017年   78篇
  2016年   141篇
  2015年   213篇
  2014年   305篇
  2013年   399篇
  2012年   399篇
  2011年   431篇
  2010年   285篇
  2009年   282篇
  2008年   379篇
  2007年   396篇
  2006年   378篇
  2005年   382篇
  2004年   338篇
  2003年   314篇
  2002年   338篇
  2001年   109篇
  2000年   89篇
  1999年   112篇
  1998年   129篇
  1997年   103篇
  1996年   88篇
  1995年   68篇
  1994年   82篇
  1993年   80篇
  1992年   72篇
  1991年   76篇
  1990年   55篇
  1989年   75篇
  1988年   58篇
  1987年   49篇
  1986年   55篇
  1985年   45篇
  1984年   52篇
  1983年   32篇
  1982年   64篇
  1981年   40篇
  1980年   39篇
  1979年   34篇
  1978年   28篇
  1977年   36篇
  1976年   27篇
  1975年   36篇
  1972年   30篇
  1971年   35篇
排序方式: 共有7493条查询结果,搜索用时 15 毫秒
991.
Peroxidases in Acetabularia: their possible role in development   总被引:1,自引:0,他引:1  
Abstract. Crude enzymatic extracts from Acetabularia exhibit very low peroxidase activity after a lag period. Starch gel electrophoresis of extracts from growing algae shows a single, extremely anodic band. Extracts of small, slow-growing or cap-bearing algae, which do not grow any more, do not exhibit any peroxidase band. Cytochemical staining with benzidine reveals changes in both the quantity and distribution of peroxidase along the polarized Acetabularia cell. The homogenous staining of small algae becomes distributed along a negative apico-basal gradient when the algae initiate their rapid growth phase. This polarized pattern is repeated on the hair whorls. A similar developmental sequence directs cap growth, with an initial intense staining reaction of the primordium, which later leaves only the corona inferior stained blue. Finally, the Acetabularia cell remains slightly blue at the edges of the rhizoidal out-growths and cap rays. Crude extracts of Acetabularia induce a lag in standard horseradish peroxidase (HRP) activity. The inhibitor is always present in small and growing algae; it is sometimes absent or less active in cap-bearing algae. In no case does it change the kinetics of the HRP reaction with guaïacol. The lag is completely suppressed by pretreatment with either H2O2 or ascorbate oxidase. The changes in peroxidase activity, correlated with developmental stage and according to a polarized gradient, suggest that the enzyme could be involved in some way in the control of morphogenesis in Acetabularia . An inhibitor of peroxidase activity, which disappears as the cap matures, might, in turn, exert a regulatory function.  相似文献   
992.
993.
994.
As nutritional status and inflammation are strongly connected, feeding and nutritional strategies could be effective to improve the ability of pigs to cope with disease. The aims of this study were to investigate the impact of a feed restriction on the ability of pigs to resist and be tolerant to a coinfection with Mycoplasma hyopneumoniae (Mhp) and the European H1N1 swine influenza virus, and the consequences for nutrient metabolism, with a focus on amino acids. Two groups of specific pathogen-free pigs were inoculated with Mhp and H1N1 21 days apart. One group was fed ad libitum, the other group was subjected to a two-week 40% feed restriction starting one week before H1N1 infection. The two respective mock control groups were included. Three days post-H1N1 infection, 200 g of feed was given to pigs previously fasted overnight and serial blood samples were taken over 4 hours to measure plasma nutrient concentrations. Throughout the study, clinical signs were observed and pathogens were detected in nasal swabs and lung tissues. Feed-restricted pigs presented shorter hyperthermia and a positive mean weight gain over the 3 days post-H1N1 infection whereas animals fed ad libitum lost weight. Both infection and feed restriction reduced postprandial glucose concentrations, indicating changes in glucose metabolism. Post-prandial plasma concentrations of the essential amino acids histidine, arginine and threonine were lower in co-infected pigs suggesting a greater use of those amino acids for metabolic purposes associated with the immune response. Altogether, these results indicate that modifying feeding practices could help to prepare animals to overcome an influenza infection. Connections with metabolism changes are discussed.  相似文献   
995.
Corticotropin-Releasing Factor Receptors (CRFRs) are class B1 G-protein-coupled receptors, which bind peptides of the corticotropin releasing factor family and are key mediators in the stress response. In order to dissect the receptors'' binding specificity and enable structural studies, full-length human CRFR1α and mouse CRFR2β as well as fragments lacking the N-terminal extracellular domain, were overproduced in E. coli. The characteristics of different CRFR2β -PhoA gene fusion products expressed in bacteria were found to be in agreement with the predicted ones in the hepta-helical membrane topology model. Recombinant histidine-tagged CRFR1α and CRFR2β expression levels and bacterial subcellular localization were evaluated by cell fractionation and Western blot analysis. Protein expression parameters were assessed, including the influence of E. coli bacterial hosts, culture media and the impact of either PelB or DsbA signal peptide. In general, the large majority of receptor proteins became inserted in the bacterial membrane. Across all experimental conditions significantly more CRFR2β product was obtained in comparison to CRFR1α. Following a detergent screen analysis, bacterial membranes containing CRFR1α and CRFR2β were best solubilized with the zwitterionic detergent FC-14. Binding of different peptide ligands to CRFR1α and CRFR2β membrane fractions were similar, in part, to the complex pharmacology observed in eukaryotic cells. We suggest that our E. coli expression system producing functional CRFRs will be useful for large-scale expression of these receptors for structural studies.  相似文献   
996.
Collective migration of mechanically coupled cell layers is a notable feature of wound healing, embryonic development, and cancer progression. In confluent epithelial sheets, the dynamics have been found to be highly heterogeneous, exhibiting spontaneous formation of swirls, long-range correlations, and glass-like dynamic arrest as a function of cell density. In contrast, the flow-like properties of one-sided cell-sheet expansion in confining geometries are not well understood. Here, we studied the short- and long-term flow of Madin-Darby canine kidney (MDCK) cells as they moved through microchannels. Using single-cell tracking and particle image velocimetry (PIV), we found that a defined averaged stationary cell current emerged that exhibited a velocity gradient in the direction of migration and a plug-flow-like profile across the advancing sheet. The observed flow velocity can be decomposed into a constant term of directed cell migration and a diffusion-like contribution that increases with density gradient. The diffusive component is consistent with the cell-density profile and front propagation speed predicted by the Fisher-Kolmogorov equation. To connect diffusion-mediated transport to underlying cellular motility, we studied single-cell trajectories and occurrence of vorticity. We discovered that the directed large-scale cell flow altered fluctuations in cellular motion at short length scales: vorticity maps showed a reduced frequency of swirl formation in channel flow compared with resting sheets of equal cell density. Furthermore, under flow, single-cell trajectories showed persistent long-range, random-walk behavior superimposed on drift, whereas cells in resting tissue did not show significant displacements with respect to neighboring cells. Our work thus suggests that active cell migration manifests itself in an underlying, spatially uniform drift as well as in randomized bursts of short-range correlated motion that lead to a diffusion-mediated transport.  相似文献   
997.
998.
Cyanobacteria are intricately organized, incorporating an array of internal thylakoid membranes, the site of photosynthesis, into cells no larger than other bacteria. They also synthesize C15-C19 alkanes and alkenes, which results in substantial production of hydrocarbons in the environment. All sequenced cyanobacteria encode hydrocarbon biosynthesis pathways, suggesting an important, undefined physiological role for these compounds. Here, we demonstrate that hydrocarbon-deficient mutants of Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803 exhibit significant phenotypic differences from wild type, including enlarged cell size, reduced growth, and increased division defects. Photosynthetic rates were similar between strains, although a minor reduction in energy transfer between the soluble light harvesting phycobilisome complex and membrane-bound photosystems was observed. Hydrocarbons were shown to accumulate in thylakoid and cytoplasmic membranes. Modeling of membranes suggests these compounds aggregate in the center of the lipid bilayer, potentially promoting membrane flexibility and facilitating curvature. In vivo measurements confirmed that Synechococcus sp. PCC 7002 mutants lacking hydrocarbons exhibit reduced thylakoid membrane curvature compared to wild type. We propose that hydrocarbons may have a role in inducing the flexibility in membranes required for optimal cell division, size, and growth, and efficient association of soluble and membrane bound proteins. The recent identification of C15-C17 alkanes and alkenes in microalgal species suggests hydrocarbons may serve a similar function in a broad range of photosynthetic organisms.Cyanobacteria (oxygenic photosynthetic bacteria) are found in nearly every environment on Earth and are major contributors to global carbon and nitrogen fixation (Galloway et al., 2004; Zwirglmaier et al., 2008). They are distinguished among prokaryotes in containing multiple internal thylakoid membranes, the site of photosynthesis, and a large protein compartment, the carboxysome, involved in carbon fixation. Despite these extra features, cyanobacteria can be as small as 0.6 µm in diameter (Raven, 1998).All cyanobacteria with sequenced genomes encode the pathway for the biosynthesis of hydrocarbons, implying an important, although as-yet-undefined, role for these compounds (Lea-Smith et al., 2015). The major forms are C15-C19 alkanes and alkenes, which can be synthesized from fatty acyl-acyl-carrier proteins (ACPs) by one or other of two separate pathways (Fig. 1; Schirmer et al., 2010; Mendez-Perez et al., 2011). The majority of species produce alkanes and alkenes via acyl-ACP reductase (FAR) and aldehyde deformylating oxygenase (FAD; Schirmer et al., 2010; Li et al., 2012; Coates et al., 2014; Lea-Smith et al., 2015). Cyanobacterial species lacking the FAR/FAD pathway synthesize alkenes via olefin synthase (Ols; Mendez-Perez et al., 2011; Coates et al., 2014; Lea-Smith et al., 2015). This suggests that hydrocarbons produced by either pathway serve a similar role in the cell. Homologs of FAR/FAD or Ols are not present in other bacteria or plant and algal species. However, C15-C17 alkanes and alkenes, synthesized by an alternate, uncharacterized pathway, were recently detected in a range of green microalgae, including Chlamydomonas reinhardtii, Chlorella variabilis NC64A, and several Nannochloropsis species (Sorigué et al., 2016). In C. reinhardtii, hydrocarbons were primarily localized to the chloroplast, which originated in evolution from a cyanobacterium that was engulfed by a host organism (Howe et al., 2008). Hydrocarbons may therefore have a similar role in cyanobacteria, some green microalgae species, and possibly a broader range of photosynthetic organisms.Open in a separate windowFigure 1.Hydrocarbon biosynthesis is encoded in all sequenced cyanobacteria. Detailed are the two hydrocarbon biosynthetic pathways, indicated in blue and red, respectively, in cyanobacteria. The number of species encoding the enzymes in each pathway is indicated.Hydrocarbons act as antidesiccants, waterproofing agents, and signaling molecules in insects (Howard and Blomquist, 2005) and prevent water loss, ensure pollen viability, and influence pathogen interactions in plants (Kosma et al., 2009; Bourdenx et al., 2011). However, the function of hydrocarbons in cyanobacteria has not been determined. Characterization of cyanobacterial hydrocarbon biosynthesis pathways has provided the basis for investigating synthetic microbial biofuel systems, which may be a renewable substitute for fossil fuels (Schirmer et al., 2010; Choi and Lee, 2013; Howard et al., 2013). However, secretion of long-chain hydrocarbons from the cell into the medium, which is likely essential for commercially viable production, has not been observed in the absence of a membrane solubilization agent (Schirmer et al., 2010; Tan et al., 2011). Cyanobacterial hydrocarbons also have a significant environmental role. Due to the abundance of cyanobacteria in the environment, hydrocarbon production is considerable, with hundreds of millions of tons released into the ocean per annum following cell death (Lea-Smith et al., 2015). This production may be sufficient to sustain populations of hydrocarbon-degrading bacteria, which can then play an important role in consuming anthropogenic oil spills (Lea-Smith et al., 2015).Here, we investigated the cellular location and role of hydrocarbons in both spherical Synechocystis sp. PCC 6803 (Synechocystis) and rod-shaped Synechococcus sp. PCC 7002 (Synechococcus) cells. We developed a model of the cyanobacterial membrane, which indicated that hydrocarbons aggregate in the middle of the lipid bilayer and, when present at levels observed in cells, lead to membrane swelling associated with pools of hydrocarbon. This suggested that alkanes may facilitate membrane curvature. In vivo measurements of Synechococcus thylakoid membrane conformation are consistent with this model.  相似文献   
999.
1000.
Climate extremes and land-use changes can have major impacts on the carbon cycle of ecosystems. Their combined effects have rarely been tested. We studied whether and how the abandonment of traditionally managed mountain grassland changes the resilience of carbon dynamics to drought. In an in situ common garden experiment located in a subalpine meadow in the Austrian Central Alps, we exposed intact ecosystem monoliths from a managed and an abandoned mountain grassland to an experimental early-summer drought and measured the responses of gross primary productivity, ecosystem respiration, phytomass and its components, and of leaf area index during the drought and the subsequent recovery period. Across all these parameters, the managed grassland was more strongly affected by drought and recovered faster than the abandoned grassland. A bivariate representation of resilience confirmed an inverse relationship of resistance and recovery; thus, low resistance was related to high recovery from drought and vice versa. In consequence, the overall perturbation of the carbon cycle caused by drought was larger in the managed than the abandoned grassland. The faster recovery of carbon dynamics from drought in the managed grassland was associated with a significantly higher uptake of nitrogen from soil. Furthermore, in both grasslands leaf nitrogen concentrations were enhanced after drought and likely reflected drought-induced increases in nitrogen availability. Our study shows that ongoing and future land-use changes have the potential to profoundly alter the impacts of climate extremes on grassland carbon dynamics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号