全文获取类型
收费全文 | 199篇 |
免费 | 19篇 |
专业分类
218篇 |
出版年
2022年 | 2篇 |
2021年 | 3篇 |
2019年 | 1篇 |
2018年 | 1篇 |
2017年 | 5篇 |
2016年 | 3篇 |
2015年 | 11篇 |
2014年 | 15篇 |
2013年 | 17篇 |
2012年 | 17篇 |
2011年 | 9篇 |
2010年 | 7篇 |
2009年 | 13篇 |
2008年 | 10篇 |
2007年 | 9篇 |
2006年 | 12篇 |
2005年 | 8篇 |
2004年 | 5篇 |
2003年 | 5篇 |
2002年 | 2篇 |
2001年 | 10篇 |
2000年 | 10篇 |
1999年 | 4篇 |
1998年 | 13篇 |
1997年 | 3篇 |
1996年 | 3篇 |
1995年 | 3篇 |
1994年 | 2篇 |
1993年 | 1篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1987年 | 2篇 |
1984年 | 2篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1979年 | 1篇 |
1976年 | 2篇 |
1971年 | 1篇 |
1967年 | 1篇 |
排序方式: 共有218条查询结果,搜索用时 12 毫秒
211.
Allison M Churcher Jose Martin Pujolar Massimo Milan Peter C Hubbard Rute ST Martins Jo?o L Saraiva Mar Huertas Luca Bargelloni Tomaso Patarnello Ilaria AM Marino Lorenzo Zane Adelino VM Canário 《BMC genomics》2014,15(1)
Background
The vertebrate brain plays a critical role in the regulation of sexual maturation and reproduction by integrating environmental information with developmental and endocrine status. The European eel Anguilla anguilla is an important species in which to better understand the neuroendocrine factors that control reproduction because it is an endangered species, has a complex life cycle that includes two extreme long distance migrations with both freshwater and seawater stages and because it occupies a key position within the teleost phylogeny. At present, mature eels have never been caught in the wild and little is known about most aspects of reproduction in A. anguilla. The goal of this study was to identify genes that may be involved in sexual maturation in experimentally matured eels. For this, we used microarrays to compare the gene expression profiles of sexually mature to immature males.Results
Using a false discovery rate of 0.05, a total of 1,497 differentially expressed genes were identified. Of this set, 991 were expressed at higher levels in brains (forebrain and midbrain) of mature males while 506 were expressed at lower levels relative to brains of immature males. The set of up-regulated genes includes genes involved in neuroendocrine processes, cell-cell signaling, neurogenesis and development. Interestingly, while genes involved in immune system function were down-regulated in the brains of mature males, changes in the expression levels of several receptors and channels were observed suggesting that some rewiring is occurring in the brain at sexual maturity.Conclusions
This study shows that the brains of eels undergo major changes at the molecular level at sexual maturity that may include re-organization at the cellular level. Here, we have defined a set of genes that help to understand the molecular mechanisms controlling reproduction in eels. Some of these genes have previously described functions while many others have roles that have yet to be characterized in a reproductive context. Since most of the genes examined here have orthologs in other vertebrates, the results of this study will contribute to the body of knowledge concerning reproduction in vertebrates as well as to an improved understanding of eel biology.Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-799) contains supplementary material, which is available to authorized users. 相似文献212.
Herwin Eding Richard PMA Crooijmans Martien AM Groenen Theo HE Meuwissen 《遗传、选种与进化》2002,34(5):613-633
The quantitative assessment of genetic diversity within and between populations is important for decision making in genetic conservation plans. In this paper we define the genetic diversity of a set of populations, S, as the maximum genetic variance that can be obtained in a random mating population that is bred from the set of populations S. First we calculated the relative contribution of populations to a core set of populations in which the overlap of genetic diversity was minimised. This implies that the mean kinship in the core set should be minimal. The above definition of diversity differs from Weitzman diversity in that it attempts to conserve the founder population (and thus minimises the loss of alleles), whereas Weitzman diversity favours the conservation of many inbred lines. The former is preferred in species where inbred lines suffer from inbreeding depression. The application of the method is illustrated by an example involving 45 Dutch poultry breeds. The calculations used were easy to implement and not computer intensive. The method gave a ranking of breeds according to their contributions to genetic diversity. Losses in genetic diversity ranged from 2.1% to 4.5% for different subsets relative to the entire set of breeds, while the loss of founder genome equivalents ranged from 22.9% to 39.3%. 相似文献
213.
John WM Bastiaansen Albart Coster Mario PL Calus Johan AM van Arendonk Henk Bovenhuis 《遗传、选种与进化》2012,44(1):3
Background
Genomic selection has become an important tool in the genetic improvement of animals and plants. The objective of this study was to investigate the impacts of breeding value estimation method, reference population structure, and trait genetic architecture, on long-term response to genomic selection without updating marker effects.Methods
Three methods were used to estimate genomic breeding values: a BLUP method with relationships estimated from genome-wide markers (GBLUP), a Bayesian method, and a partial least squares regression method (PLSR). A shallow (individuals from one generation) or deep reference population (individuals from five generations) was used with each method. The effects of the different selection approaches were compared under four different genetic architectures for the trait under selection. Selection was based on one of the three genomic breeding values, on pedigree BLUP breeding values, or performed at random. Selection continued for ten generations.Results
Differences in long-term selection response were small. For a genetic architecture with a very small number of three to four quantitative trait loci (QTL), the Bayesian method achieved a response that was 0.05 to 0.1 genetic standard deviation higher than other methods in generation 10. For genetic architectures with approximately 30 to 300 QTL, PLSR (shallow reference) or GBLUP (deep reference) had an average advantage of 0.2 genetic standard deviation over the Bayesian method in generation 10. GBLUP resulted in 0.6% and 0.9% less inbreeding than PLSR and BM and on average a one third smaller reduction of genetic variance. Responses in early generations were greater with the shallow reference population while long-term response was not affected by reference population structure.Conclusions
The ranking of estimation methods was different with than without selection. Under selection, applying GBLUP led to lower inbreeding and a smaller reduction of genetic variance while a similar response to selection was achieved. The reference population structure had a limited effect on long-term accuracy and response. Use of a shallow reference population, most closely related to the selection candidates, gave early benefits while in later generations, when marker effects were not updated, the estimation of marker effects based on a deeper reference population did not pay off. 相似文献214.
215.
216.
217.
Background
Pelodera (Rhabditis) strongyloides is a small saprophytic nematode that lives in decaying organic matter. On rare occasions, it can invade the mammalian skin, causing a pruritic, erythematous, alopecic and crusting dermatitis on skin sites that come into contact with the ground. Diagnosis of the disease is based on case history (a dog living outdoors on damp straw bedding) with characteristic skin lesions and on the demonstration of typical larvae in skin scrapings or biopsy. Pelodera (rhabditic) dermatitis cases have been reported mainly from Central European countries and the United States. 相似文献218.
Bases and spaces: resources on the web for accessing the draft human genome - II - After publication of the draft 下载免费PDF全文
Colin AM Semple 《Genome biology》2001,2(6):reviews2001.1-reviews20016
The volume of human genome sequence and the variety of web-based tools to access it continue to grow at an impressive rate, but a working knowledge of certain key resources can be sufficient to get the most from your genome. This article provides an update to Genome Biology 2000, 1(4):reviews2001.1-2001.5. 相似文献