首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148篇
  免费   43篇
  2021年   7篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   11篇
  2014年   13篇
  2013年   7篇
  2012年   10篇
  2011年   12篇
  2010年   16篇
  2009年   6篇
  2008年   14篇
  2007年   13篇
  2006年   4篇
  2005年   8篇
  2004年   5篇
  2003年   6篇
  2002年   11篇
  2001年   2篇
  2000年   2篇
  1999年   6篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1988年   3篇
  1987年   1篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1978年   1篇
  1977年   3篇
  1974年   1篇
  1958年   1篇
排序方式: 共有191条查询结果,搜索用时 31 毫秒
111.
112.
113.
114.
115.
116.
Medina  L; Haltiwanger  RS 《Glycobiology》1998,8(2):191-198
Over the past decade, there have been many reports suggesting the presence of complex carbohydrates on nuclear and cytoplasmic proteins in mammalian cells. Some of the most often cited of these reports deal with the glycosylation of the high mobility group (HMG) proteins. These are relatively abundant chromosomal proteins that are known to be associated with nucleosomes and actively transcribed regions of chromatin. The original report describing HMG protein glycosylation presented several lines of evidence suggesting that these proteins are glycosylated, including carbohydrate compositional analysis and periodic-acid Schiff staining. We have attempted to repeat these observations with more highly purified protein than was utilized in the original study. Using carbohydrate compositional analysis performed by high pH anion exchange chromatography coupled to pulsed-amperometric detection, we saw no evidence for significant glycosylation of these proteins. In addition, we found no evidence for the presence of O- GlcNAc, a well known form of nuclear glycosylation. The HMG proteins did react with periodate, suggesting the presence of a modification containing cis-diols on the protein. Several tryptic peptides isolated from HMG 14 and 17 which retained the periodate reactivity had in common lysine residues, suggesting a potential modification of the straightepsilon-amino groups of lysines such as nonenzymatic glycation. Western blot analysis of the HMG proteins using anti-advanced glycation endproducts (AGE) antibodies confirmed the presence of glycation products on the HMG proteins.   相似文献   
117.
118.
Radiation therapy for cancer of the head and neck can devastate the salivary glands and partially devitalize the mandible and maxilla. As a result, saliva production is drastically reduced and its quality adversely altered. Without diligent home and professional care, the teeth are subject to rapid destruction by caries, necessitating extractions with attendant high risk of necrosis of the supporting bone. Innovative techniques in delivery of radiation therapy and administration of drugs that selectively protect normal tissues can reduce significantly the radiation effects on salivary glands. Nonetheless, many patients still suffer severe oral dryness. I review here the functional morphology and development of salivary glands as these relate to approaches to preventing and restoring radiation-induced loss of salivary function. The acinar cells are responsible for most of the fluid and organic material in saliva, while the larger ducts influence the inorganic content. A central theme of this review is the extent to which the several types of epithelial cells in salivary glands may be pluripotential and the circumstances that may influence their ability to replace cells that have been lost or functionally inactivated due to the effects of radiation. The evidence suggests that the highly differentiated cells of the acini and large ducts of mature glands can replace themselves except when the respective pools of available cells are greatly diminished via apoptosis or necrosis owing to severely stressful events. Under the latter circumstances, relatively undifferentiated cells in the intercalated ducts proliferate and redifferentiate as may be required to replenish the depleted pools. It is likely that some, if not many, acinar cells may de-differentiate into intercalated duct-like cells and thus add to the pool of progenitor cells in such situations. If the stress is heavy doses of radiation, however, the result is not only the death of acinar cells, but also a marked decline in functional differentiation and proliferative capacity of all of the surviving cells, including those with progenitor capability. Restoration of gland function, therefore, seems to require increasing the secretory capacity of the surviving cells, or replacing the acinar cells and their progenitors either in the existing gland remnants or with artificial glands.  相似文献   
119.
120.
Since April 2012, there have been 17 laboratory-confirmed human cases of respiratory disease associated with newly recognized human betacoronavirus lineage C virus EMC (HCoV-EMC), and 7 of them were fatal. The transmissibility and pathogenesis of HCoV-EMC remain poorly understood, and elucidating its cellular tropism in human respiratory tissues will provide mechanistic insights into the key cellular targets for virus propagation and spread. We utilized ex vivo cultures of human bronchial and lung tissue specimens to investigate the tissue tropism and virus replication kinetics following experimental infection with HCoV-EMC compared with those following infection with human coronavirus 229E (HCoV-229E) and severe acute respiratory syndrome coronavirus (SARS-CoV). The innate immune responses elicited by HCoV-EMC were also investigated. HCoV-EMC productively replicated in human bronchial and lung ex vivo organ cultures. While SARS-CoV productively replicated in lung tissue, replication in human bronchial tissue was limited. Immunohistochemistry revealed that HCoV-EMC infected nonciliated bronchial epithelium, bronchiolar epithelial cells, alveolar epithelial cells, and endothelial cells. Transmission electron microscopy showed virions within the cytoplasm of bronchial epithelial cells and budding virions from alveolar epithelial cells (type II). In contrast, there was minimal HCoV-229E infection in these tissues. HCoV-EMC failed to elicit strong type I or III interferon (IFN) or proinflammatory innate immune responses in ex vivo respiratory tissue cultures. Treatment of human lung tissue ex vivo organ cultures with type I IFNs (alpha and beta IFNs) at 1 h postinfection reduced the replication of HCoV-EMC, suggesting a potential therapeutic use of IFNs for treatment of human infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号