首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1204篇
  免费   54篇
  国内免费   1篇
  2023年   6篇
  2022年   11篇
  2021年   26篇
  2020年   19篇
  2019年   18篇
  2018年   28篇
  2017年   18篇
  2016年   16篇
  2015年   49篇
  2014年   54篇
  2013年   94篇
  2012年   98篇
  2011年   102篇
  2010年   52篇
  2009年   44篇
  2008年   57篇
  2007年   80篇
  2006年   72篇
  2005年   57篇
  2004年   53篇
  2003年   52篇
  2002年   38篇
  2001年   20篇
  2000年   17篇
  1999年   11篇
  1998年   11篇
  1997年   8篇
  1996年   5篇
  1995年   12篇
  1994年   7篇
  1993年   7篇
  1992年   5篇
  1991年   9篇
  1990年   7篇
  1989年   5篇
  1988年   4篇
  1987年   6篇
  1985年   5篇
  1984年   6篇
  1982年   3篇
  1981年   10篇
  1980年   8篇
  1979年   9篇
  1978年   6篇
  1977年   6篇
  1976年   6篇
  1972年   3篇
  1967年   2篇
  1966年   2篇
  1965年   2篇
排序方式: 共有1259条查询结果,搜索用时 15 毫秒
31.
Expression and purification of human membrane proteins for structural studies represent a great challenge. This is because micro- to milligram amounts of pure isolated protein are required. To this aim, we successfully expressed the human vitamin C transporter-1 (hSVCT1; SLC23A1) in Xenopus laevis oocytes and isolated highly pure protein in microgram amounts. Recombinant hSVCT1 was functional when expressed in oocytes and glycosylated. Structural analysis of purified hSVCT1 by transmission electron microscopy and single particle analysis unveiled its shape, dimensions and low-resolution structure as well as the existence of a major monomeric and minor dimeric population. Chemical crosslinking of isolated oocyte membranes containing expressed hSVCT1 indicated similar oligomeric states of hSVCT1 in lipid bilayers. This work reports the first purification and structural analysis of a human SVCT protein and opens the way for future functional and structural studies using purified hSVCT1.  相似文献   
32.
Murraya koenigii (L.) Spreng. (Rutaceae), commonly known as ‘curry leaf tree’, is a popular spice and condiment of India. To explore the diversity of the essential‐oil yield and aroma profile of curry leaf, growing wild in foot and mid hills of north India, 58 populations were collected during spring season. M. koenigii populations were found to grow up to an altitude of 1487 m in north India. Comparative results showed considerable variations in the essential‐oil yield and composition. The essential‐oil yield varied from 0.14 to 0.80% in shade‐dried leaves of different populations of M. koenigii. Analysis of the essential oils by GC and GC/MS, and the subsequent classification by statistical analysis resulted in four clusters with significant variations in their terpenoid composition. Major components of the essential oils of investigated populations were α‐pinene ( 2 ; 4.5–71.5%), sabinene ( 3 ; <0.05–66.1%), (E)‐caryophyllene ( 11 ; 1.6–18.0%), β‐pinene ( 4 ; <0.05–13.6%), terpinen‐4‐ol ( 9 ; 0.0–8.4%), γ‐terpinene ( 8 ; 0.2–7.4%), limonene ( 7 ; 1.1–5.5%), α‐terpinene ( 6 ; 0.0–4.5%), (E)‐nerolidol ( 14 ; 0.0–4.1%), α‐humulene ( 12 ; 0.6–3.5%), α‐thujene ( 1 ; 0.0–2.5%), β‐elemene ( 10 ; 0.2–2.4%), β‐selinene ( 13 ; 0.2–2.3%), and myrcene ( 5 ; 0.5–2.1%). Comparison of the present results with those in earlier reports revealed new chemotypes of M. koenigii in investigated populations from Western Himalaya. The present study documents M. koenigii populations having higher amounts of sabinene ( 3 ; up to 66.1%) for the first time.  相似文献   
33.
Candida albicans and Aspergillus fumigatus are dangerous fungal pathogens with high morbidity and mortality, particularly in immunocompromised patients. Innate immune-mediated programmed cell death (pyroptosis, apoptosis, necroptosis) is an integral part of host defense against pathogens. Inflammasomes, which are canonically formed upstream of pyroptosis, have been characterized as key mediators of fungal sensing and drivers of proinflammatory responses. However, the specific cell death pathways and key upstream sensors activated in the context of Candida and Aspergillus infections are unknown. Here, we report that C. albicans and A. fumigatus infection induced inflammatory programmed cell death in the form of pyroptosis, apoptosis, and necroptosis (PANoptosis). Further, we identified the innate immune sensor Z-DNA binding protein 1 (ZBP1) as the apical sensor of fungal infection responsible for activating the inflammasome/pyroptosis, apoptosis, and necroptosis. The Zα2 domain of ZBP1 was required to promote this inflammasome activation and PANoptosis. Overall, our results demonstrate that C. albicans and A. fumigatus induce PANoptosis and that ZBP1 plays a vital role in inflammasome activation and PANoptosis in response to fungal pathogens.  相似文献   
34.
35.
Panallergens show structural similarities, and they are responsible for many cross-reactions between pollen and plant food sources. The aim of the present study was to investigate IgE reactivity to peanut allergen components in children with birch pollen allergy. Patients experienced symptoms of allergic asthma, allergic rhinitis, and urticaria, and they underwent a complete diagnostic evaluation, including skin prick test (SPT), specific IgE (sIgE) to birch pollen allergen (t3), peanut allergen (f13). In addition, measurement of sIgE to the major birch allergen components, Betula verrucosa (Bet v1, Bet v2), and to peanut allergen components, Arachis hypogaea (genuine componens: Ara h1, Ara h2, Ara h3, and cross-reactive Ara h8) was performed, by using a microarray technique (component resolved diagnosis, CRD). SPT to birch extract was positive in all children, and SPT to peanut extract was positive in 51 % of them. sIgE to both allergens was increased in 39 % of children, 55 % of them had increased sIgE (t3), and one child had increased sIgE (f13). CRD results confirmed that some children were sensitized to Bet v1 only, and some children to genuine Ara h only. Bet v1/Ara h8 cross-reactivity was found in 16 % of children. Results of the present study reveal that SPT, sIgE, and CRD may detect sensitization and co-sensitization with birch and peanut allergens/allergen components, and CRD may help to differentiate sensitization to genuine peanut components from sensitization to peanut cross-reactive component in birch-sensitive children. Diagnostic approach has to be individualized for each patient.  相似文献   
36.
Abstract

Reaching the experimental time scale of millisecond is a grand challenge for protein folding simulations. The development of advanced Molecular Dynamics techniques like Replica Exchange Molecular Dynamics (REMD) makes it possible to reach these experimental timescales. In this study, an attempt has been made to reach the multi microsecond simulation time scale by carrying out folding simulations on a three helix bundle protein, Villin, by combining REMD and Amber United Atom model. Twenty replicas having different temperatures ranging from 295 K to 390 K were simulated for 1.5 μs each. The lowest Root Mean Square Deviation (RMSD) structure of 2.5 Å was obtained with respect to native structure (PDB code 1VII), with all the helices formed. The folding population landscapes were built using segment-wise RMSD and Principal Components as reaction coordinates. These analyses suggest the two-stage folding for Villin. The combination of REMD and Amber United Atom model may be useful to understand the folding mechanism of various fast folding proteins  相似文献   
37.
NtdA from Bacillus subtilis is a sugar aminotransferase that catalyzes the pyridoxal phosphate-dependent equatorial transamination of 3-oxo-α-d-glucose 6-phosphate to form α-d-kanosamine 6-phosphate. The crystal structure of NtdA shows that NtdA shares the common aspartate aminotransferase fold (Type 1) with residues from both monomers forming the active site. The crystal structures of NtdA alone, co-crystallized with the product α-d-kanosamine 6-phosphate, and incubated with the amine donor glutamate reveal three key structures in the mechanistic pathway of NtdA. The structure of NtdA alone reveals the internal aldimine form of NtdA with the cofactor pyridoxal phosphate covalently attached to Lys-247. The addition of glutamate results in formation of pyridoxamine phosphate. Co-crystallization with kanosamine 6-phosphate results in the formation of the external aldimine. Only α-d-kanosamine 6-phosphate is observed in the active site of NtdA, not the β-anomer. A comparison of the structure and sequence of NtdA with other sugar aminotransferases enables us to propose that the VIβ family of aminotransferases should be divided into subfamilies based on the catalytic lysine motif.  相似文献   
38.
4-Hydroxynonenal (HNE) has been widely implicated in the mechanisms of oxidant-induced toxicity, but the detrimental effects of HNE associated with DNA damage or cell cycle arrest have not been thoroughly studied. Here we demonstrate for the first time that HNE caused G2/M cell cycle arrest of hepatocellular carcinoma HepG2 (p53 wild type) and Hep3B (p53 null) cells that was accompanied with decreased expression of CDK1 and cyclin B1 and activation of p21 in a p53-independent manner. HNE treatment suppressed the Cdc25C level, which led to inactivation of CDK1. HNE-induced phosphorylation of Cdc25C at Ser-216 resulted in its translocation from nucleus to cytoplasm, thereby facilitating its degradation via the ubiquitin-mediated proteasomal pathway. This phosphorylation of Cdc25C was regulated by activation of the ataxia telangiectasia and Rad3-related protein (ATR)/checkpoint kinase 1 (Chk1) pathway. The role of HNE in the DNA double strand break was strongly suggested by a remarkable increase in comet tail formation and H2A.X phosphorylation in HNE-treated cells in vitro. This was supported by increased in vivo phosphorylation of H2A.X in mGsta4 null mice that have impaired HNE metabolism and increased HNE levels in tissues. HNE-mediated ATR/Chk1 signaling was inhibited by ATR kinase inhibitor (caffeine). Additionally, most of the signaling effects of HNE on cell cycle arrest were attenuated in hGSTA4 transfected cells, thereby indicating the involvement of HNE in these events. A novel role of GSTA4-4 in the maintenance of genomic integrity is also suggested.  相似文献   
39.
The fungal ATP-binding cassette (ABC) transporter Cdr1 protein (Cdr1p), responsible for clinically significant drug resistance, is composed of two transmembrane domains (TMDs) and two nucleotide binding domains (NBDs). We have probed the nature of the drug binding pocket by performing systematic mutagenesis of the primary sequences of the 12 transmembrane segments (TMSs) found in the TMDs. All mutated proteins were expressed equally well and localized properly at the plasma membrane in the heterologous host Saccharomyces cerevisiae, but some variants differed significantly in efflux activity, substrate specificity, and coupled ATPase activity. Replacement of the majority of the amino acid residues with alanine or glycine yielded neutral mutations, but about 42% of the variants lost resistance to drug efflux substrates completely or selectively. A predicted three-dimensional homology model shows that all the TMSs, apart from TMS4 and TMS10, interact directly with the drug-binding cavity in both the open and closed Cdr1p conformations. However, TMS4 and TMS10 mutations can also induce total or selective drug susceptibility. Functional data and homology modeling assisted identification of critical amino acids within a drug-binding cavity that, upon mutation, abolished resistance to all drugs tested singly or in combinations. The open and closed Cdr1p models enabled the identification of amino acid residues that bordered a drug-binding cavity dominated by hydrophobic residues. The disposition of TMD residues with differential effects on drug binding and transport are consistent with a large polyspecific drug binding pocket in this yeast multidrug transporter.  相似文献   
40.
RAS-GRF1 is a guanine nucleotide exchange factor with the ability to activate RAS and RAC GTPases in response to elevated calcium levels. We previously showed that beginning at 1 month of age, RAS-GRF1 mediates NMDA-type glutamate receptor (NMDAR)-induction of long term depression in the CA1 region of the hippocampus of mice. Here we show that beginning at 2 months of age, when mice first acquire the ability to discriminate between closely related contexts, RAS-GRF1 begins to contribute to the induction of long term potentiation (LTP) in the CA1 hippocampus by mediating the action of calcium-permeable, AMPA-type glutamate receptors (CP-AMPARs). Surprisingly, LTP induction by CP-AMPARs through RAS-GRF1 occurs via activation of p38 MAP kinase rather than ERK MAP kinase, which has more frequently been linked to LTP. Moreover, contextual discrimination is blocked by knockdown of Ras-Grf1 expression specifically in the CA1 hippocampus, infusion of a p38 MAP kinase inhibitor into the CA1 hippocampus, or the injection of an inhibitor of CP-AMPARs. These findings implicate the CA1 hippocampus in the developmentally dependent capacity to distinguish closely related contexts through the appearance of a novel LTP-supporting signaling pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号