首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203篇
  免费   14篇
  国内免费   3篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2020年   2篇
  2019年   5篇
  2018年   4篇
  2017年   3篇
  2016年   7篇
  2015年   11篇
  2014年   9篇
  2013年   11篇
  2012年   16篇
  2011年   10篇
  2010年   16篇
  2009年   20篇
  2008年   14篇
  2007年   13篇
  2006年   8篇
  2005年   8篇
  2004年   5篇
  2003年   4篇
  2002年   4篇
  2001年   6篇
  2000年   2篇
  1999年   6篇
  1998年   7篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1988年   1篇
  1980年   2篇
  1979年   2篇
  1977年   2篇
  1968年   1篇
排序方式: 共有220条查询结果,搜索用时 31 毫秒
71.
72.
73.
Plant species richness and productivity often show a positive relationship, but the underlying mechanisms are not fully understood, especially at the plant species level. We examined how growing plants in species mixture influences intraspecific rates of short-term carbon (C-) translocation, and determined whether such short-term responses are reflected in biomass yields. We grew monocultures and mixtures of six common C3 grassland plant species in outdoor mesocosms, applied a 13C-CO2 pulse in situ to trace assimilated C through plants, into the soil, and back to the atmosphere, and quantified species-specific biomass. Pulse derived 13C enrichment was highest in the legumes Lotus corniculatus and Trifolium repens, and relocation (i.e. transport from the leaves to other plant parts) of the recently assimilated 13C was most rapid in T. repens grown in 6-species mixtures. The grass Anthoxanthum odoratum also showed high levels of 13C enrichment in 6-species mixtures, while 13C enrichment was low in Lolium perenne, Plantago lanceolata and Achillea millefolium. Rates of C loss through respiration were highest in monocultures of T. repens and relatively low in species mixtures, while the proportion of 13C in the respired CO2 was similar in monocultures and mixtures. The grass A. odoratum and legume T. repens were most promoted in 6-species mixtures, and together with L. corniculatus, caused the net biomass increase in 6-species mixtures. These plant species also had highest rates of 13C-label translocation, and for A. odoratum and T. repens this effect was greatest in plant individuals grown in species mixtures. Our study reveals that short-term plant C translocation can be accelerated in plant individuals of legume and C3 grass species when grown in mixtures, and that this is strongly positively related to overyielding. These results demonstrate a mechanistic coupling between changes in intraspecific plant carbon physiology and increased community level productivity in grassland systems.  相似文献   
74.
Northern peatlands are recognized as globally important stores of terrestrial carbon (C), yet we have limited understanding of how global changes, including land use, affect C cycling processes in these ecosystems. Making use of a long-term (>50?year old) peatland land management experiment in the UK, we investigated, using a 13CO2 pulse chase approach, how managed burning and grazing influenced the short-term uptake and cycling of C through the plant?Csoil system. We found that burning affected the composition and growth stage of the plant community, by substantially reducing the abundance of mature ericoid dwarf-shrubs. Burning also affected the structure of the soil microbial community, measured using phospholipid fatty acid analysis, by reducing fungal biomass. There was no difference in net ecosystem exchange of CO2, but burning was associated with an increase in photosynthetic uptake of 13CO2 and increased transfer of 13C to the soil microbial community relative to unburned areas. In contrast, grazing had no detectable effects on any measured C cycling process. Our study provides new insight into how changes in vegetation and soil microbial communities arising from managed burning affect peatland C cycling processes, by enhancing the uptake of photosynthetic C and the transfer of C belowground, whilst maintaining net ecosystem exchange of CO2 at pre-burn levels.  相似文献   
75.
Neurturin (NTN) is a neuronal survival factor that activates the Ret tyrosine kinase in the presence of a GPI-linked coreceptor (either GFR alpha1 or GFR alpha2). Neurturin-deficient (NTN-/-) mice generated by homologous recombination are viable and fertile but have defects in the enteric nervous system, including reduced myenteric plexus innervation density and reduced gastrointestinal motility. Parasympathetic innervation of the lacrimal and submandibular salivary gland is dramatically reduced in NTN-/- mice, indicating that Neurturin is a neurotrophic factor for parasympathetic neurons. GFR alpha2-expressing cells in the trigeminal and dorsal root ganglia are also depleted in NTN-/- mice. The loss of GFR alpha2-expressing neurons, in conjunction with earlier studies, provides strong support for GFR alpha2/Ret receptor complexes as the critical mediators of NTN function in vivo.  相似文献   
76.
To investigate how the level of microbial activity in grassland soils affects plant–microbial competition for different nitrogen (N) forms, we established microcosms consisting of a natural soil community and a seedling of one of two co-existing grass species, Anthoxanthum odoratum or Festuca rubra. We then stimulated the soil microbial community with glucose in half of the microcosms and followed the transfer of added inorganic (15NH415NO3) and organic (glycine-2-13C-15N) N into microbial and plant biomass. We found that microbes captured significantly more 15N in organic than in inorganic form and that glucose addition increased microbial 15N capture from the inorganic source. Shoot and root biomass, total shoot N content and shoot and root 15N contents were significantly greater for A. odoratum than F. rubra, whereas F. rubra had higher shoot and root N concentrations. Where glucose was not added, A. odoratum had higher shoot 15N content with organic than with inorganic 15N addition, whereas where glucose was added, both species had higher shoot 15N content with inorganic than with organic 15N. Glucose addition had equally negative effects on shoot growth, total shoot N content, shoot and root N concentrations and shoot and root 15N content for both species. Both N forms produced significantly more shoot biomass and higher shoot N content than the water control, but the chemical form of N had no significant effect. Our findings suggest that plant species that are better in capturing nutrients from soil are not necessarily better in tolerating increasing microbial competition for nutrients. It also appears that intense microbial competition has more adverse effects on the uptake of organic than inorganic N by plants, which may potentially have significant implications for interspecific plant–plant competition for N in ecosystems where the importance of organic N is high and some of the plant species specialize in use of organic N.  相似文献   
77.
The Pasteuria group of endospore-forming bacteria has been studied as a biocontrol agent of plant-parasitic nematodes. Techniques have been developed for its detection and quantification in soil samples, and these mainly focus on observations of endospore attachment to nematodes. Characterization of Pasteuria populations has recently been performed with DNA-based techniques, which usually require the extraction of large numbers of spores. We describe a simple immunological method for the quantification and characterization of Pasteuria populations. Bayesian statistics were used to determine an extraction efficiency of 43% and a threshold of detection of 210 endospores g(-1) sand. This provided a robust means of estimating numbers of endospores in small-volume samples from a natural system. Based on visual assessment of endospore fluorescence, a quantitative method was developed to characterize endospore populations, which were shown to vary according to their host.  相似文献   
78.
79.
80.
Control of nematode parasites with reduced reliance on the use of anthelmintics was studied in 16 ewes with suckling twin lambs on contaminated pasture in Denmark. Ewes and lambs were treated with albendazole at turn-out 3 May. Ewes were removed from the groups on 26 July, and lambs were slaughtered on 11 October. The animals were allocated to 4 groups of 8 lambs and their 4 ewes. Group TS was treated with albendazole at weeks 3, 6 and 8 after turnout and set-stocked; group TM was similarly treated but moved to clean pasture in conjunction with the last drenching; group US was untreated and set-stocked, and group UM was left untreated but moved to clean pasture week 8 after turn-out. Supplementary feed was offered in June and August due to scarcity of pasture. Strategic treatments of ewes and lambs weeks 3, 6 and 8 after turn-out, with or without a move to clean pasture, were highly effective in controlling nematode infections for most of the season. This was reflected in better weight gains and carcass characteristics in the treated compared to untreated lambs, resulting in an average increase in the value of the product by 36%. The effect of moving without treatment (UM) on faecal egg counts was limited but peak pasture infectivity was reduced to less than 10% compared to the set-stocked group and weight gains of lambs were significantly better despite poor feed availability in late season. The study showed that under set-stocked conditions repeated anthelmintic treatments of both ewes and lambs in early season may ensure sufficient nematode control whereas moving animals to clean pasture without dosing was less efficient. The latter may, however, still be a viable option in organic and other production systems where routine use of anthelmintics is banned, particularly if weaning and moving are combined or a second move is performed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号