首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203篇
  免费   14篇
  国内免费   3篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2020年   2篇
  2019年   5篇
  2018年   4篇
  2017年   3篇
  2016年   7篇
  2015年   11篇
  2014年   9篇
  2013年   11篇
  2012年   16篇
  2011年   10篇
  2010年   16篇
  2009年   20篇
  2008年   14篇
  2007年   13篇
  2006年   8篇
  2005年   8篇
  2004年   5篇
  2003年   4篇
  2002年   4篇
  2001年   6篇
  2000年   2篇
  1999年   6篇
  1998年   7篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1988年   1篇
  1980年   2篇
  1979年   2篇
  1977年   2篇
  1968年   1篇
排序方式: 共有220条查询结果,搜索用时 281 毫秒
121.
Tropical soils contain huge carbon stocks, which climate warming is projected to reduce by stimulating organic matter decomposition, creating a positive feedback that will promote further warming. Models predict that the loss of carbon from warming soils will be mediated by microbial physiology, but no empirical data are available on the response of soil carbon and microbial physiology to warming in tropical forests, which dominate the terrestrial carbon cycle. Here we show that warming caused a considerable loss of soil carbon that was enhanced by associated changes in microbial physiology. By translocating soils across a 3000 m elevation gradient in tropical forest, equivalent to a temperature change of ± 15 °C, we found that soil carbon declined over 5 years by 4% in response to each 1 °C increase in temperature. The total loss of carbon was related to its original quantity and lability, and was enhanced by changes in microbial physiology including increased microbial carbon‐use‐efficiency, shifts in community composition towards microbial taxa associated with warmer temperatures, and increased activity of hydrolytic enzymes. These findings suggest that microbial feedbacks will cause considerable loss of carbon from tropical forest soils in response to predicted climatic warming this century.  相似文献   
122.

Background  

Speciation often occurs in complex or uncertain temporal and spatial contexts. Processes such as reinforcement, allopatric divergence, and assortative mating can proceed at different rates and with different strengths as populations diverge. The Central American Midas cichlid fish species complex is an important case study for understanding the processes of speciation. Previous analyses have demonstrated that allopatric processes led to species formation among the lakes of Nicaragua as well as sympatric speciation that is occurring within at least one crater lake. However, since speciation is an ongoing process and sampling genetic diversity of such lineages can be biased by collection scheme or random factors, it is important to evaluate the robustness of conclusions drawn on individual time samples.  相似文献   
123.
There is much interest in understanding the nature of feedback mechanisms between plants and soil organisms in grazed ecosystems. In this study, we examine the effects of different intensities of defoliation on the growth of three dominant grass species, and observe how these plant responses relate to the biomass and activity of the microbial community in the root zone. Our data show that grassland plants with varying tolerances to grazing have markedly different growth responses to defoliation, and that these responses vary with the intensity of cutting. Defoliation of grasses which are tolerant to grazing, namely Festuca rubra and Cynosurus cristatus, leads to a reduction in root mass and an increase in the allocation of resources to shoots. In contrast, defoliation of a grass with low tolerance to grazing, Anthoxanthum odoratum, had little effect on root mass, but increased the relative allocation of resources below-ground. In all plant species, defoliation led to an increase in soil microbial biomass and C use efficiency in the root zone. This response was greatest in the root zone of A. odoratum and is likely to be related to changes in root exudation pattern following defoliation. The significance of these changes in relation to soil nutrient dynamics and plant nutrient uptake during regrowth require further exploration. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
124.
The brook charr (Salvelinus fontinalis; Osteichthyes: Salmonidae) is a phenotypically diverse fish species inhabiting much of North America. But relatively few genetic diagnostic resources are available for this fish species. We isolated 41 microsatellites from S. fontinalis polymorphic in one or more species of salmonid fish. Thirty‐seven were polymorphic in brook charr, 15 in the congener Arctic charr (Salvelinus alpinus) and 14 in the lake charr (Salvelinus namaycush). Polymorphism was also relatively high in Oncorhynchus, where 21 loci were polymorphic in rainbow trout (Oncorhynchus mykiss) and 16 in cutthroat trout (Oncorhynchus clarkii) but only seven and four microsatellite loci were polymorphic in the more distantly related lake whitefish (Coregonus clupeaformis) and Atlantic salmon (Salmo salar), respectively. One duplicated locus (Sfo228Lav) was polymorphic at both duplicates in S. fontinalis.  相似文献   
125.

Background  

The program eBURST uses multilocus sequence typing data to divide bacterial populations into groups of closely related strains (clonal complexes), predicts the founding genotype of each group, and displays the patterns of recent evolutionary descent of all other strains in the group from the founder. The reliability of eBURST was evaluated using populations simulated with different levels of recombination in which the ancestry of all strains was known.  相似文献   
126.
将刺梨提取物用于卷烟加料,用二氯甲烷同时蒸馏萃取刺梨提取物,分别用极性柱和非极性柱进行GC/MS分析.结果表明,刺梨提取物与烟香谐调,具有增加香气质和香气量、掩盖杂气、改善余味的作用,是安全有效的天然烟用香料;采用双柱分析的方法共检出62种化合物,比用单一极性柱分析更能相对客观、全面的反映刺梨提取物中的致香成分的状况;...  相似文献   
127.
128.
Soils deliver important ecosystem services, such as nutrient provision for plants and the storage of carbon (C) and nitrogen (N), which are greatly impacted by drought. Both plants and soil biota affect soil C and N availability, which might in turn affect their response to drought, offering the potential to feed back on each other’s performance. In a greenhouse experiment, we compared legacy effects of repeated drought on plant growth and the soil food web in two contrasting land-use systems: extensively managed grassland, rich in C and with a fungal-based food web, and intensively managed wheat lower in C and with a bacterial-based food web. Moreover, we assessed the effect of plant presence on the recovery of the soil food web after drought. Drought legacy effects increased plant growth in both systems, and a plant strongly reduced N leaching. Fungi, bacteria, and their predators were more resilient after drought in the grassland soil than in the wheat soil. The presence of a plant strongly affected the composition of the soil food web, and alleviated the effects of drought for most trophic groups, regardless of the system. This effect was stronger for the bottom trophic levels, whose resilience was positively correlated to soil available C. Our results show that plant belowground inputs have the potential to affect the recovery of belowground communities after drought, with implications for the functions they perform, such as C and N cycling.  相似文献   
129.
European foredunes are almost exclusively colonised by Ammophila arenaria, and both the natural succession and the die-out of this plant have been linked to populations of plant-parasitic nematodes (PPN). The overarching aim of this study was to investigate top-down control processes of PPN in these natural ecosystems through comparative analyses of the diversity and dynamics of PPN and their microbial enemies. Our specific aims were, first, to identify and quantify PPN microbial enemies in European sand dunes; second, to assess their life history traits, their spatial and temporal variation in these ecosystems, and third, to evaluate their control potential of PPN populations. This was done by seasonal sampling of a range of sites and making observations on both the nematode and the microbial enemy communities in rhizosphere sand. Nine different nematode microbial enemies belonging to different functional groups were detected in European sand dunes. Their high diversity in these low productivity ecosystems could both result from or lead to the lack of dominance of a particular nematode genus. The distribution of microbial enemies was spatially and temporally variable, both among and within sampling sites. Obligate parasites, either with low host-specificity or having the ability to form an environmentally resistant propagule, are favoured in these ecosystems and are more frequent and abundant than facultative parasites. Three microbial enemies correlated, either positively or negatively, with PPN population size: Catenaria spp., Hirsutella rhossiliensis and Pasteuria penetrans. Microbial-enemy supported links in the food-web may be involved in the control of PPN populations through indirect effects. The endospore-forming P. penetrans was the most successful top-down control agent, and was implicated in the direct control of Meloidogyne spp. and indirect facilitation of Pratylenchus spp. Overall, our findings suggest strong and diverse top-down control effects on the nematode community in these natural ecosystems.  相似文献   
130.
Extreme drought events have the potential to cause dramatic changes in ecosystem structure and function, but the controls upon ecosystem stability to drought remain poorly understood. Here we used model systems of two commonly occurring, temperate grassland communities to investigate the short-term interactive effects of a simulated 100-year summer drought event, soil nitrogen (N) availability and plant species diversity (low/high) on key ecosystem processes related to carbon (C) and N cycling. Whole ecosystem CO2 fluxes and leaching losses were recorded during drought and post-rewetting. Litter decomposition and C/N stocks in vegetation, soil and soil microbes were assessed 4 weeks after the end of drought. Experimental drought caused strong reductions in ecosystem respiration and net ecosystem CO2 exchange, but ecosystem fluxes recovered rapidly following rewetting irrespective of N and species diversity. As expected, root C stocks and litter decomposition were adversely affected by drought across all N and plant diversity treatments. In contrast, drought increased soil water retention, organic nutrient leaching losses and soil fertility. Drought responses of above-ground vegetation C stocks varied depending on plant diversity, with greater stability of above-ground vegetation C to drought in the high versus low diversity treatment. This positive effect of high plant diversity on above-ground vegetation C stability coincided with a decrease in the stability of microbial biomass C. Unlike species diversity, soil N availability had limited effects on the stability of ecosystem processes to extreme drought. Overall, our findings indicate that extreme drought events promote post-drought soil nutrient retention and soil fertility, with cascading effects on ecosystem C fixation rates. Data on above-ground ecosystem processes underline the importance of species diversity for grassland function in a changing environment. Furthermore, our results suggest that plant–soil interactions play a key role for the short-term stability of above-ground vegetation C storage to extreme drought events.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号