首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   345篇
  免费   32篇
  377篇
  2022年   3篇
  2021年   5篇
  2019年   3篇
  2018年   2篇
  2017年   5篇
  2016年   11篇
  2015年   8篇
  2014年   8篇
  2013年   17篇
  2012年   15篇
  2011年   18篇
  2010年   16篇
  2009年   9篇
  2008年   17篇
  2007年   20篇
  2006年   15篇
  2005年   17篇
  2004年   10篇
  2003年   14篇
  2002年   16篇
  2001年   8篇
  2000年   13篇
  1999年   8篇
  1998年   6篇
  1997年   4篇
  1996年   4篇
  1995年   4篇
  1993年   3篇
  1992年   4篇
  1991年   4篇
  1990年   6篇
  1989年   3篇
  1988年   3篇
  1987年   5篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1980年   5篇
  1977年   8篇
  1976年   8篇
  1975年   6篇
  1974年   6篇
  1973年   3篇
  1972年   3篇
  1971年   4篇
  1969年   4篇
  1967年   2篇
  1966年   2篇
排序方式: 共有377条查询结果,搜索用时 0 毫秒
91.
Valuing environmental functions in developing countries   总被引:6,自引:0,他引:6  
The interface between ecology and economics is the valuation of environmental goods, services and attributes. The total economic value of an ecosystem is derived by estimating monetary values for it's direct use, indirect use, option and non-use values. Recent advances have been made in the economic valuation of direct, option and non-use values. Much less attention has been paid to measuring the indirect use value provided by environmental functions. These values may be particularly significant in developing countries. This paper details the challenge presented by valuing environmental functions to ecologists and economists and synthesizes the methodological advances that have occurred. Using tropical forests, wetlands and biodiversity as illustrations, the application of this methodology to valuing the functions of complex natural systems is investigated and existing studies reviewed. Conclusions on further research are presented.  相似文献   
92.
Plasmodium falciparum malaria is a major cause of morbidity and mortality in many developing countries especially in sub-Saharan Africa. A susceptibility locus for mild malaria has been mapped to the MHC region, and TNF polymorphisms have been associated with mild malaria. The Natural Cytotoxicity-triggering Receptor 3 (NCR3) gene is located in the peak region of linkage, and is 15kb distal to TNF. In this study, we considered NCR3 as a candidate gene, and we genotyped ten NCR3 single nucleotide polymorphisms (SNPs). Here, we report evidence of an association between mild malaria and NCR3 -412G>C polymorphism located within the promoter. Population-based association analysis showed that NCR3 -412C carriers had more frequent mild malaria attacks than NCR3 -412GG individuals (P=0.001). Using the family-based association test (FBAT) program and its phenotype (PBAT) option, we further found that NCR3 -412C (P=0.0009) and a haplotype containing NCR3 -412C (P=0.008) were significantly associated with increased risk of mild malaria, and that the association was not due to the association of TNF with mild malaria. These observations suggest that there are at least two genes located on the central region of MHC involved in genetic control of human malaria. The association of NCR3 with malaria should provide new insights into the role of Natural Killer cells in this common disease.  相似文献   
93.
We report here the complete annotated genome sequence of Flavobacterium indicum CIP 109464(T) (= GPTSA100-9(T)), isolated from warm spring water in Assam, India. The genome sequence of F. indicum revealed a number of interesting features and genes in relation to its environmental lifestyle.  相似文献   
94.
In Arctic wet tundra, microbial controls on organic matter decomposition are likely to be altered as a result of climatic disruption. Here, we present a study on the activity, diversity and vertical distribution of methane-cycling microbial communities in the active layer of wet polygonal tundra on Herschel Island. We recorded potential methane production rates from 5 to 40?nmol?h(-1) g(-1) wet soil at 10?°C and significantly higher methane oxidation rates reaching values of 6-10?μmol?h(-1) g(-1) wet soil. Terminal restriction fragment length polymorphism (T-RFLP) and cloning analyses of mcrA and pmoA genes demonstrated that both communities were stratified along the active layer vertical profile. Similar to other wet Arctic tundra, the methanogenic community hosted hydrogenotrophic (Methanobacterium) as well as acetoclastic (Methanosarcina and Methanosaeta) members. A pronounced shift toward a dominance of acetoclastic methanogens was observed in deeper soil layers. In contrast to related circum-Arctic studies, the methane-oxidizing (methanotrophic) community on Herschel Island was dominated by members of the type II group (Methylocystis, Methylosinus, and a cluster related to Methylocapsa). The present study represents the first on methane-cycling communities in the Canadian Western Arctic, thus advancing our understanding of these communities in a changing Arctic.  相似文献   
95.
96.
97.
98.
Growth is an integrative trait that responds to environmental factors and is crucial for plant fitness. A major environmental factor influencing plant growth is nutrient supply. In order to explore this relationship further, we quantified growth-related traits, ion content, and other biochemical traits (protein, hexose, and chlorophyll contents) of a recombinant inbred line population of Arabidopsis (Arabidopsis thaliana) grown on different levels of potassium and phosphate. Performing an all subsets multiple regression analyses revealed a link between growth-related traits and mineral nutrient content. Based on our results, up to 85% of growth variation can be explained by variation in ion content, highlighting the importance of ionomics for a broader understanding of plant growth. In addition, quantitative trait loci (QTLs) were detected for growth-related traits, ion content, further biochemical traits, and their responses to reduced supplies of potassium or phosphate. Colocalization of these QTLs is explored, and candidate genes are discussed. A QTL for rosette weight response to reduced potassium supply was identified on the bottom of chromosome 5, and its effects were validated using selected near isogenic lines. These lines retained over 20% more rosette weight in reduced potassium supply, accompanied by an increase in potassium content in their leaves.Plants in natural environments face abiotic constraints limiting growth and ultimately affecting their fitness. In response to such constraints, flowering time (Korves et al., 2007) and seed dormancy (Donohue et al., 2005) as well as vegetative growth (Barto and Cipollini, 2005; Milla et al., 2009) are the main traits controlling fitness (for review, see Alonso-Blanco et al., 2009). These traits are under the control of complex networks integrating genetic (G) and environmental (E) factors as well as their interaction (G × E). Due to the implications for food and renewable energy sources, dissecting the genetic architecture that underlies plant growth is becoming a priority for plant science (Rengel and Damon, 2008; Carroll and Somerville, 2009; Gilbert, 2009).Plant growth is highly dependent on mineral nutrient uptake (Clarkson, 1980; Sinclair, 1992). Minerals can be distinguished into two categories based on the amount required by plants: micronutrients, which are found in relatively small amounts in the plant (such as copper and iron), and macronutrients, which constitute between 1,000 and 15,000 μg g−1 plant dry weight (such as potassium and phosphate; Marschner, 1995, Buchanan et al., 2002). Phosphate is an important structural and signaling molecule with an essential role in photosynthesis, energy conservation, and carbon metabolism. Its deficiency leads to a reduction of growth and an increase of pathogen susceptibility (Marschner, 1995; Williamson et al., 2001; Abel et al., 2002; López-Bucio et al., 2005; Poirier and Bucher, 2008; Vijayraghavan and Soole, 2010). Potassium is not incorporated into any organic substances but acts as the major osmoticum of the cell, controlling cell expansion, plasma membrane potential and transport, pH value, and many other catalytic processes (Maathuis and Sanders, 1996; Armengaud et al., 2004; Christian et al., 2006; Di Cera, 2006). Potassium deficiency leads to reduced plant growth, a loss of turgor, increased susceptibility to cold stress and pathogens, and the development of chlorosis and necrosis (Marschner, 1995; Véry and Sentenac, 2003; Ashley et al., 2006; Amtmann et al., 2008). To cope with changes in nutrient availability, plants have evolved different mechanisms of adaptation, such as changes in ion transporter expression and activity (Ashley et al., 2006; Jung et al., 2009), morphological changes, such as an increase in root growth to explore more soil volume (Marschner, 1995; Shirvani et al., 2001; Jiang et al., 2007; Jordan-Meille and Pellerin, 2008), or acidification of the surrounding soil in order to mobilize more mineral nutrients (for review, see Ryan et al., 2001). Although these adaptations are well known, the mechanisms involved in sensing and signaling low mineral nutrient status are less well understood, despite significant progress in this area being made (Doerner, 2008; Jung et al., 2009; Luan et al., 2009; Wang and Wu, 2010).One approach to identify genes that are involved in plant responses to environmental factors is to perform a quantitative trait locus (QTL) analysis on a mapping population grown in contrasting environments, allowing the identification of QTL-environment (QTL × E) interactions. Some QTLs for growth-related traits in response to environmental changes were cloned already. For example, the differential response of root growth of some Arabidopsis (Arabidopsis thaliana) accessions to phosphate starvation led to the identification of allelic differences responsible for this phenotype (Reymond et al., 2006; Svistoonoff et al., 2007). Other studies have identified QTLs for shoot dry matter under changing nitrogen supply (Rauh et al., 2002; Loudet et al., 2003). In parallel to natural variation for growth, natural variation for ion content has also been reported. In Arabidopsis, considerable variation in the content of mineral nutrients exists both in seeds (Vreugdenhil et al., 2004; Waters and Grusak, 2008) and in leaves (Harada and Leigh, 2006; Rus et al., 2006; Baxter et al., 2008a; Morrissey et al., 2009). Furthermore, changes in mineral nutrient homeostasis have also been reported to be associated with characteristic multivariate changes in the leaf ionome, the mineral nutrient and trace element composition of an organism or an organ (Baxter et al., 2008b). Due to higher throughput and lower costs, such “omics” analyses examining alterations of large numbers of certain molecules at once have recently become available for mapping purposes. Some QTL studies have linked the variations of these omics data to variation of growth or other physiological traits. For instance, Meyer et al. (2007) and Schauer et al. (2008) linked plant growth or morphological traits to a synergistic network of metabolomic compounds in Arabidopsis and tomato (Solanum lycopersicum), respectively. In addition, Sulpice et al. (2009) associated differences in growth with starch content using a set of Arabidopsis accessions. Compiling the importance of ions in the process of cell division (Lai et al., 2007; Sano et al., 2007) or cell expansion (Philippar et al., 1999; Elumalai et al., 2002), ionomics appears to be a major unexplored field for understanding growth.In this study, we focus on variation in plant growth, the root and leaf ionomes, and their response to varying supplies of potassium and phosphate. Studying variations for these traits among recombinant inbred lines (RILs) in Arabidopsis enabled us to detect QTL and QTL × E interactions for all of these traits. To understand the observed variation in plant growth, predictors that explained a high percentage of variation of growth-related traits have been selected especially among the root and leaf ionomes. The colocalization between growth-related trait QTLs and QTLs for their predictors allowed us to point out genetic regions of possible causality. In addition, the effect of a growth-response QTL on reduced potassium supply was validated with selected near isogenic lines (NILs) that maintained a higher rosette weight when grown in reduced potassium supply. This growth advantage went along with significant changes in ion contents that further emphasize the impact of the ionome in plant growth variations.  相似文献   
99.
Fungi are ubiquitous microorganisms often associated with spoilage and biodeterioration of a large variety of foods and feedstuffs. Their growth may be influenced by temporary changes in intrinsic or environmental factors such as temperature, water activity, pH, preservatives, atmosphere composition, all of which may represent potential sources of stress. Molecular-based analyses of their physiological responses to environmental conditions would help to better manage the risk of alteration and potential toxicity of food products. However, before investigating molecular stress responses, appropriate experimental stress conditions must be precisely defined. Penicillium glabrum is a filamentous fungus widely present in the environment and frequently isolated in the food processing industry as a contaminant of numerous products. Using response surface methodology, the present study evaluated the influence of two environmental factors (temperature and pH) on P. glabrum growth to determine 'optimised' environmental stress conditions. For thermal and pH shocks, a large range of conditions was applied by varying factor intensity and exposure time according to a two-factorial central composite design. Temperature and exposure duration varied from 30 to 50 °C and from 10 min to 230 min, respectively. The effects of interaction between both variables were observed on fungal growth. For pH, the duration of exposure, from 10 to 230 min, had no significant effect on fungal growth. Experiments were thus carried out on a range of pH from 0.15 to 12.50 for a single exposure time of 240 min. Based on fungal growth results, a thermal shock of 120 min at 40 °C or a pH shock of 240 min at 1.50 or 9.00 may therefore be useful to investigate stress responses to non-optimal conditions.  相似文献   
100.
A stopped assay for fatty acid amide hydrolase (FAAH) has been developed, whereby the enzyme reaction product ([(3)H]ethanolamine) was separated from substrate (anandamide [ethanolamine-1-(3)H]), by differential adsorption to charcoal. The assay gave a better extraction efficiency when acidic rather than alkaline charcoal solutions were used to stop the reaction, and a very good ratio of sample/blank was also seen. The acidic charcoal assay gave the expected sensitivities to compounds known to inhibit FAAH (palmitoyltrifluoromethyl ketone, arvanil, AM404 and indomethacin). It is concluded that the acidic charcoal extraction method provides a robust and simple stopped assay for FAAH without the need to use potentially hazardous solvents like chloroform.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号