全文获取类型
收费全文 | 143篇 |
免费 | 12篇 |
专业分类
155篇 |
出版年
2023年 | 1篇 |
2021年 | 3篇 |
2020年 | 1篇 |
2019年 | 1篇 |
2017年 | 2篇 |
2016年 | 1篇 |
2014年 | 6篇 |
2013年 | 10篇 |
2012年 | 6篇 |
2011年 | 3篇 |
2010年 | 5篇 |
2009年 | 4篇 |
2008年 | 6篇 |
2007年 | 1篇 |
2006年 | 6篇 |
2005年 | 8篇 |
2004年 | 11篇 |
2003年 | 8篇 |
2002年 | 8篇 |
2001年 | 6篇 |
2000年 | 7篇 |
1999年 | 6篇 |
1998年 | 1篇 |
1997年 | 1篇 |
1996年 | 1篇 |
1995年 | 4篇 |
1994年 | 1篇 |
1993年 | 2篇 |
1992年 | 4篇 |
1991年 | 1篇 |
1990年 | 1篇 |
1989年 | 4篇 |
1988年 | 4篇 |
1987年 | 2篇 |
1986年 | 3篇 |
1985年 | 2篇 |
1984年 | 2篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1979年 | 1篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1976年 | 2篇 |
1975年 | 1篇 |
1973年 | 2篇 |
1970年 | 1篇 |
排序方式: 共有155条查询结果,搜索用时 12 毫秒
121.
Gilles Bleau Gaston Lalumière Alcide Chapdelaine Kenneth D. Roberts 《生物化学与生物物理学报:生物膜》1975,375(2):220-223
Scanning electron microscopic studies demonstrate that the normal biconcave shape of the human erythrocyte is maintained in hypotonic saline when physiological levels (10?5) of cholesterol sulfate are added to the solutions. Cholesterol sulfate is a naturally occuring sterol conjugate in plasma and erythrocyte membranes and we propose that it may belong to that class of amphipathic molecules responsible for the maintenance of structure of the erythrocyte by interaction with membrane components. 相似文献
122.
123.
124.
Glutamine synthetase (GS; EC.6.3.1.2.) occurs as cytosolic (GS1) and plastidic (GS2) polypeptides. This paper describes the expression of GS isoenzymes in coleoptile during the anaerobic germination of rice (Oryza sativa L.) and the influence of exogenous nitrate on this. By immunoprecipitation with anti-GS serum, two polypeptides of 41- and 44-kDa were detected of which the former was predominant. After fractionation by ion-exchange chromatography, the 41 and 44 kDa bands were identified as GS1 and GS2, respectively. Northern blot analysis with specific probes showed the presence of mRNA for cytosolic GS but not for the plastidic form. The presence of exogenous nitrate did not alter the activity and expression of GS in the coleoptile. The role of GS during the anaerobic germination of rice seems to induce the re-assimilation of ammonia rather than the assimilation of nitrate.Abbreviations GS
glutamine synthetase
- GS1
cytosolic glutamine synthetase
- GS2
platidic glutamine synthetase
We are grateful to Dr. Julie V. Cullimore for providing GS anti-serum and clones. The research was supported by the National Research Council of Italy, special project RAISA, sub-project N. 2 paper N. 1586. 相似文献
125.
Synaptic Competition Sculpts the Development of GABAergic Axo-Dendritic but Not Perisomatic Synapses
Elena Frola Annarita Patrizi Thomas Goetz Lucian Medrihan Enrica Maria Petrini Andrea Barberis Peer Wulff William Wisden Marco Sassoè-Pognetto 《PloS one》2013,8(2)
The neurotransmitter GABA regulates many aspects of inhibitory synapse development. We tested the hypothesis that GABAA receptors (GABAARs) work together with the synaptic adhesion molecule neuroligin 2 (NL2) to regulate synapse formation in different subcellular compartments. We investigated mice (“γ2 knockdown mice”) with an engineered allele of the GABAAR γ2 subunit gene which produced a mosaic expression of synaptic GABAARs in neighboring neurons, causing a strong imbalance in synaptic inhibition. Deletion of the γ2 subunit did not abolish synapse formation or the targeting of NL2 to distinct types of perisomatic and axo-dendritic contacts. Thus synaptic localization of NL2 does not require synaptic GABAARs. However, loss of the γ2 subunit caused a selective decrease in the number of axo-dendritic synapses on cerebellar Purkinje cells and cortical pyramidal neurons, whereas perisomatic synapses were not significantly affected. Notably, γ2-positive cells had increased axo-dendritic innervation compared with both γ2-negative and wild-type counterparts. Moreover heterologous synapses on spines, that are found after total deletion of GABAARs from all Purkinje cells, were rare in cerebella of γ2 knockdown mice. These findings reveal a selective role of γ2 subunit-containing GABAARs in regulating synapse development in distinct subcellular compartments, and support the hypothesis that the refinement of axo-dendritic synapses is regulated by activity-dependent competition between neighboring neurons. 相似文献
126.
Discovery of N-substituted 7-azaindoles as Pan-PIM kinases inhibitors – Lead optimization – Part III
Claude Barberis James Pribish Elina Tserlin Alexandre Gross Mark Czekaj Matthieu Barragué Paul Erdman Sachin Maniar John Jiang Luke Fire Vinod Patel Andrew Hebert Mikhail Levit Anlai Wang Frank Sun Shih-Min A. Huang 《Bioorganic & medicinal chemistry letters》2019,29(3):491-495
N-substituted azaindoles were discovered as promising pan-PIM inhibitors. Lead optimization is described en route toward the identification of a clinical candidate. Modulation of physico-chemical properties allowed to solve inherent hERG and permeability liabilities. Compound 17 showed tumor growth inhibition in a KG1 tumor-bearing mouse model. 相似文献
127.
The purpose of the present study was to determine the inhibitory activities of two bacteriocins, produced by lactobacilli,
against genital mycoplasmas. In this study, infections produced by genital mycoplasmas were studied; of these, 1.3% were caused
by Mycoplasma hominis, 10.7% by Ureaplasma urealyticum and 5.6% by U. urealyticum + M. hominis. U. urealyticum was isolated from 75 out of 123 patients with genital mycoplasmas, while M. hominis was isolated from 9 patients (7.3%) and both U. urealyticum and M. hominis from 39 patients (31.7%). Bacteriocins, L23 and L60, produced by Lactobacillus fermentum and L. rhamnosus, respectively, appear to be two novel inhibitors of bacterial infection with potential antibacterial activity. Both bacteriocins
proved to be active against 100% of strains tested; MICs of bacteriocin L23 ranged between 320 and 160 UA ml−1 for 78% of the M. hominis strains and between 320 and 80 UA ml−1 for 95% of the U. urealyticum strains. In addition, bacteriocin L60 was still active at 160 UA ml−1 for a high percentage (56%) of M. hominis strains, and at 80 UA ml−1 for 53% of the U. urealyticum strains. Interestingly, these antimicrobial substances produced by lactobacilli showed an inhibitory activity against genital
mycoplasmas even when diluted. Altogether, our study indicates that the bacteriocins, L23 and L60, are good candidates for
the treatment or prevention of genital infections in women. 相似文献
128.
A radioiodinated linear vasopressin antagonist: a ligand with high affinity and specificity for V1a receptors 总被引:2,自引:0,他引:2
A Schmidt S Audigier C Barberis S Jard M Manning A S Kolodziejczyk W H Sawyer 《FEBS letters》1991,282(1):77-81
A linear vasopressin antagonist, Phaa-D-Tyr(Me)-Phe-Gln-Asn-Arg-Pro-Arg-Tyr-NH2 (Linear AVP Antag) (Phaa = Phenylacetyl), was monoiodinated at the phenyl moiety of the tyrosylamide residue at position 9. This antagonist appeared to be a highly potent anti-vasopressor peptide with a pA2 value in vivo of 8.94. It was demonstrated to bind to rat liver membrane preparations with a very high affinity (Kd = 0.06 nM). The affinity for the rat uterus oxytocin receptor was lower (Ki = 2.1 nM), and affinities for the rat kidney- and adenohypophysis-vasopressin receptors were much lower (Ki = 47 nM and 92 nM, respectively), resulting in a highly specific vasopressin V1a receptor ligand. Autoradiographical studies using rat brain slices showed that this ligand is a good tool for studies on vasopressin receptor localization and characterization. 相似文献
129.
Replication Origins and Timing of Temporal Replication in Budding Yeast: How to Solve the Conundrum?
Similarly to metazoans, the budding yeast Saccharomyces cereviasiae replicates its genome with a defined timing. In this organism, well-defined, site-specific origins, are efficient and fire in almost every round of DNA replication. However, this strategy is neither conserved in the fission yeast Saccharomyces pombe, nor in Xenopus or Drosophila embryos, nor in higher eukaryotes, in which DNA replication initiates asynchronously throughout S phase at random sites. Temporal and spatial controls can contribute to the timing of replication such as Cdk activity, origin localization, epigenetic status or gene expression. However, a debate is going on to answer the question how individual origins are selected to fire in budding yeast. Two opposing theories were proposed: the “replicon paradigm” or “temporal program” vs. the “stochastic firing”. Recent data support the temporal regulation of origin activation, clustering origins into temporal blocks of early and late replication. Contrarily, strong evidences suggest that stochastic processes acting on origins can generate the observed kinetics of replication without requiring a temporal order. In mammalian cells, a spatiotemporal model that accounts for a partially deterministic and partially stochastic order of DNA replication has been proposed. Is this strategy the solution to reconcile the conundrum of having both organized replication timing and stochastic origin firing also for budding yeast? In this review we discuss this possibility in the light of our recent study on the origin activation, suggesting that there might be a stochastic component in the temporal activation of the replication origins, especially under perturbed conditions. 相似文献
130.
Kenneth Y. Wertheim Bhanwar Lal Puniya Alyssa La Fleur Ab Rauf Shah Matteo Barberis Tom Helikar 《PLoS computational biology》2021,17(8)
Immune responses rely on a complex adaptive system in which the body and infections interact at multiple scales and in different compartments. We developed a modular model of CD4+ T cells, which uses four modeling approaches to integrate processes at three spatial scales in different tissues. In each cell, signal transduction and gene regulation are described by a logical model, metabolism by constraint-based models. Cell population dynamics are described by an agent-based model and systemic cytokine concentrations by ordinary differential equations. A Monte Carlo simulation algorithm allows information to flow efficiently between the four modules by separating the time scales. Such modularity improves computational performance and versatility and facilitates data integration. We validated our technology by reproducing known experimental results, including differentiation patterns of CD4+ T cells triggered by different combinations of cytokines, metabolic regulation by IL2 in these cells, and their response to influenza infection. In doing so, we added multi-scale insights to single-scale studies and demonstrated its predictive power by discovering switch-like and oscillatory behaviors of CD4+ T cells that arise from nonlinear dynamics interwoven across three scales. We identified the inflamed lymph node’s ability to retain naive CD4+ T cells as a key mechanism in generating these emergent behaviors. We envision our model and the generic framework encompassing it to serve as a tool for understanding cellular and molecular immunological problems through the lens of systems immunology. 相似文献