首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1529篇
  免费   158篇
  国内免费   1篇
  2022年   14篇
  2021年   18篇
  2017年   15篇
  2016年   20篇
  2015年   40篇
  2014年   31篇
  2013年   55篇
  2012年   61篇
  2011年   67篇
  2010年   28篇
  2009年   39篇
  2008年   43篇
  2007年   46篇
  2006年   41篇
  2005年   47篇
  2004年   46篇
  2003年   55篇
  2002年   49篇
  2001年   51篇
  2000年   67篇
  1999年   40篇
  1998年   25篇
  1997年   12篇
  1995年   13篇
  1994年   12篇
  1993年   12篇
  1992年   25篇
  1991年   27篇
  1990年   21篇
  1989年   21篇
  1988年   22篇
  1987年   32篇
  1986年   38篇
  1985年   28篇
  1984年   26篇
  1983年   42篇
  1982年   21篇
  1981年   23篇
  1980年   22篇
  1979年   29篇
  1978年   30篇
  1977年   24篇
  1976年   20篇
  1975年   16篇
  1974年   20篇
  1973年   15篇
  1972年   13篇
  1971年   21篇
  1969年   13篇
  1964年   11篇
排序方式: 共有1688条查询结果,搜索用时 15 毫秒
161.
Oxidative stress and free radical production have been implicated in Alzheimer's disease, where low levels of the antioxidant vitamin C (ascorbate) have been shown to be associated with the disease. In this study, neuroblastoma SH-SY5Y cells were treated with hydrogen peroxide in the presence of ascorbate in order to elucidate the mechanism(s) of protection against oxidative stress afforded by ascorbate. Protein oxidation, glutathione levels, cell viability and the effects on the proteome and its oxidized counterpart were monitored. SH-SY5Y cells treated with ascorbate prior to co-incubation with peroxide showed increased viability in comparison to cells treated with peroxide alone. This dual treatment also caused an increase in protein carbonyl content and a decrease in glutathione levels within the cells. Proteins, extracted from SH-SY5Y cells that were treated with either ascorbate or peroxide alone or with ascorbate prior to peroxide, were separated by two-dimensional gel electrophoresis and analyzed for oxidation. Co-incubation for 24 hours decreased the number of oxidised proteins (e.g. acyl CoA oxidase 3) and induced brain derived neurotrophic factor (BDNF) expression. Enhanced expression of BDNF may contribute to the protective effects of ascorbate against oxidative stress in neuronal cells.  相似文献   
162.
Phosphorylation of histone H3 is a hallmark event in mitosis and is associated with chromosome condensation. Here, we use a combination of immobilized metal affinity chromatography and tandem mass spectrometry to characterize post-translational modifications associated with phosphorylation on the N-terminal tails of histone H3 variants purified from mitotically arrested HeLa cells. Modifications observed in vivo on lysine residues adjacent to phosphorylated Ser and Thr provide support for the existence of the "methyl/phos", binary-switch hypothesis [Fischle, W., Wang, Y., and Allis, C. D. (2003) Nature 425, 475-479]. ELISA with antibodies selective for H3 at Ser10, Ser28, and Thr3 show reduced activity when adjacent Lys residues are modified. When used together, mass spectrometry and immunoassay methods provide a powerful approach for elucidation of the histone code and identification of histone post-translational modifications that occur during mitosis and other specific cellular events.  相似文献   
163.
Primary erythroid cells and erythroid cell lines may synthesize and secrete tumor necrosis factor-alpha (TNF-alpha) following stimulation with erythropoietin (EPO). The effect of triggering TNF-alpha synthesis and secretion was investigated in erythroleukemia and myeloid cell lines: HCD57, DA3-EPOR, and BAF3-EPOR. The EPO-induced, membrane-bound form of autocrine TNF-alpha seemed to enhance proliferation of HCD57 and DA3-EPOR cells; however, the concentration of secreted autocrine/paracrine TNF-alpha was never sufficient to have an effect. Autocrine TNF-alpha acts through TNFRII receptors to stimulate proliferation. Modulation of mitogen-activated protein kinase (MAPK)/extracellular signal-related kinase (ERK-1/2) activity by the membrane-bound form of autocrine TNF-alpha apparently played a central role in the control of EPO-dependent proliferation of HCD57 and DA3-EPOR cells. Primary erythroid cells and DA3-EPOR cells were found to express similar, high levels of both TNFRI and TNFRII, showing that differential expression of TNF-alpha receptors does not explain why primary cells are inhibited and DA3-EPOR cells are stimulated by autocrine TNF-alpha. BAF3 cells expressing a mutant EPOR with no cytoplasmic tyrosine residues were capable of triggering EPO-dependent TNF-alpha synthesis and secretion, indicating that tyrosine-docking sites in the EPOR were not required for EPO-dependent TNF-alpha secretion.  相似文献   
164.
Photosystem II (PSII), the multisubunit pigment-protein complex localised in the thylakoid membranes of oxygenic photosynthetic organisms, uses light energy to drive a series of remarkable reactions leading to the oxidation of water. The products of this oxidation are dioxygen, which is released to the atmosphere, and reducing equivalents destined to reduce carbon dioxide to organic molecules. The water oxidation occurs at catalytic sites composed of four manganese atoms (Mn(4)-cluster) and powered by the redox potential of an oxidised chlorophyll a molecule (P680(*+)). Gerald T (Jerry) Babcock and colleagues showed that electron/proton transfer processes from substrate water to P680(*+) involved a tyrosine residue (Y(Z)) and proposed an attractive reaction mechanism for the direct involvement of Y(Z) in the chemistry of water oxidation. The 'hydrogen-atom abstract/metalloradical' mechanism he formulated is an expression of his genius and a highlight of his many other outstanding contributions to photosynthesis research. A structural basis for Jerry's model is now being revealed by X-ray crystallography.  相似文献   
165.
The transport of L-leucine by two human breast cancer cell lines has been examined. L-leucine uptake by MDA-MB-231 and MCF-7 cells was via a BCH-sensitive, Na+ -independent pathway. L-leucine uptake by both cell lines was inhibited by L-alanine, D-leucine and to a lesser extent by L-lysine but not by L-proline. Estrogen (17beta-estradiol) stimulated L-leucine uptake by MCF-7 but not by MDA-MB-231 cells. L-leucine efflux from MDA-MB-231 and MCF-7 cells was trans-stimulated by BCH in a dose-dependent fashion. The effect of external BCH on L-leucine efflux from both cell types was almost abolished by reducing the temperature from 37 to 4 degrees C. There was, however, a significant efflux of L-leucine under zero-trans conditions which was also temperature-sensitive. L-glutamine, L-leucine, D-leucine, L-alanine, AIB and L-lysine all trans-stimulated L-leucine release from MDA-MB-231 and MCF-7 cells. In contrast, D-alanine and L-proline had little or no effect. The anti-cancer agent melphalan inhibited L-leucine uptake by MDA-MB-231 cells but had no effect on L-leucine efflux. Quantitative real-time PCR revealed that LAT1 mRNA was approximately 200 times more abundant than LAT2 mRNA in MCF-7 cells and confirmed that MDA-MB-231 cells express LAT1 but not LAT2 mRNA. LAT1 mRNA levels were higher in MCF-7 cells than in MDA-MB-231 cells. Furthermore, LAT1 mRNA was more abundant than CD98hc mRNA in both MDA-MB-231 and MCF-7 cells. The results suggest that system L is the major transporter for L-leucine in both MDA-MB-231 and MCF-7 cells. It is possible that LAT1 may be the major molecular correlate of system L in both cell types. However, not all of the properties of system L reflected those of LAT1/LAT2/CD98hc.  相似文献   
166.
Studies from our laboratory have demonstrated that leptin inhibits galactose absorption in vitro by acting on the Na(+)/glucose cotransporter SGLT1. Since PKC and PKA are involved in the regulation of SGLT1 and leptin is able to activate these kinases, we have investigated the possible implication of PKC and PKA in the inhibition of sugar absorption by leptin in rat small intestinal rings. Inhibition of 1 mM galactose uptake by 0.2 nM leptin is blocked by 2 microM chelerythrine, a PKC inhibitor, which by itself does not affect galactose uptake. However, 1 microM H-89, a PKA inhibitor, inhibits galactose uptake and does not block leptin inhibition. Biochemical assays show that the inhibitory effect of leptin is accompanied by a approximately 2-fold increase in PKA and PKC activity. These findings indicate that the activation of PKC is more relevant than PKA activation in the inhibition of galactose absorption by leptin.  相似文献   
167.
Spatially restricted activation of signaling molecules governs critical aspects of cell migration; the mechanism by which this is achieved nonetheless remains unknown. Using time-lapse confocal microscopy, we analyzed dynamic redistribution of lipid rafts in chemoattractant-stimulated leukocytes expressing glycosyl phosphatidylinositol-anchored green fluorescent protein (GFP-GPI). Chemoattractants induced persistent GFP-GPI redistribution to the leading edge raft (L raft) and uropod rafts of Jurkat, HL60, and dimethyl sulfoxide-differentiated HL60 cells in a pertussis toxin-sensitive, actin-dependent manner. A transmembrane, nonraft GFP protein was distributed homogeneously in moving cells. A GFP-CCR5 chimera, which partitions in L rafts, accumulated at the leading edge, and CCR5 redistribution coincided with recruitment and activation of phosphatidylinositol-3 kinase gamma in L rafts in polarized, moving cells. Membrane cholesterol depletion impeded raft redistribution and asymmetric recruitment of PI3K to the cell side facing the chemoattractant source. This is the first direct evidence that lipid rafts order spatial signaling in moving mammalian cells, by concentrating the gradient sensing machinery at the leading edge.  相似文献   
168.
Many of the threats to the persistence of populations of sensitivespecies have physiological or pathological mechanisms, and thosemechanisms are best understood through the inherently integrativediscipline of physiological ecology. The desert tortoise waslisted under the Endangered Species Act largely due to a newlyrecognized upper respiratory disease thought to cause mortalityin individuals and severe declines in populations. Numeroushypotheses about the threats to the persistence of desert tortoisepopulations involve acquisition of nutrients, and its connectionto stress and disease. The nutritional wisdom hypothesis positsthat animals should forage not for particular food items, butinstead, for particular nutrients such as calcium and phosphorusused in building bones. The optimal foraging hypothesis suggeststhat, in circumstances of resource abundance, tortoises shouldforage as dietary specialists as a means of maximizing intakeof resources. The optimal digestion hypothesis suggests thattortoises should process ingesta in ways that regulate assimilationrate. Finally, the cost-of-switching hypothesis suggests thatherbivores, like the desert tortoise, should avoid switchingfood types to avoid negatively affecting the microbe communityresponsible for fermenting plants into energy and nutrients.Combining hypotheses into a resource acquisition theory leadsto novel predictions that are generally supported by data presentedhere. Testing hypotheses, and synthesizing test results intoa theory, provides a robust scientific alternative to the popularuse of untested hypotheses and unanalyzed data to assert theneeds of species. The scientific approach should focus on hypothesesconcerning anthropogenic modifications of the environment thatimpact physiological processes ultimately important to populationphenomena. We show how measurements of such impacts as nutrientstarvation, can cause physiological stress, and that the endocrinemechanisms involved with stress can result in disease. Finally,our new syntheses evince a new hypothesis. Free molecules ofthe stress hormone corticosterone can inhibit immunity, andthe abundance of "free corticosterone" in the blood (thoughtto be the active form of the hormone) is regulated when thecorticosterone molecules combine with binding globulins. Thesex hormone, testosterone, combines with the same binding globulin.High levels of testosterone, naturally occurring in the breedingseason, may be further enhanced in populations at high densities,and the resulting excess testosterone may compete with bindingglobulins, thereby releasing corticosterone and reducing immunityto disease. This sequence could result in physiological andpathological phenomena leading to population cycles with a periodthat would be essentially impossible to observe in desert tortoise.Such cycles could obscure population fluctuations of anthropogenicorigin.  相似文献   
169.
Surveys of microsatellite variation show that genetic diversity has largely recovered in two reef-building corals, Pocillopora damicornis and Seriatopora hystrix (Scleractinia: Pocilloporidae), on reefs which were decimated by the eruption of the volcano Krakatau in 1883. Assignment methods and gene flow estimates indicate that the recolonization of Krakatau occurred mainly from the closest upstream reef system, Pulau Seribu, but that larval input from other regions has also occurred. This pattern is clearer in S. hystrix, which is traditionally the more dispersal-limited species. Despite these observed patterns of larval dispersal, self-recruitment appears to now be the most important factor in supplying larvae to coral populations in Krakatau. This suggests that the colonization of devastated reefs can occur quickly through larval dispersal; however, their survival requires local sources of larvae for self-recruitment. This research supports the observation that the recovery of genetic diversity in coral reef animals can occur on the order of decades and centuries rather than millennia. Conservation measures aimed at sustaining coral reef populations in Krakatau and elsewhere should include both the protection of upstream source populations for larval replenishment should disaster occur as well as the protection of large adult colonies to serve as local larval sources.  相似文献   
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号