首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14427篇
  免费   1129篇
  2022年   108篇
  2021年   183篇
  2020年   124篇
  2019年   160篇
  2018年   228篇
  2017年   169篇
  2016年   342篇
  2015年   565篇
  2014年   563篇
  2013年   826篇
  2012年   1008篇
  2011年   974篇
  2010年   673篇
  2009年   526篇
  2008年   799篇
  2007年   867篇
  2006年   857篇
  2005年   831篇
  2004年   809篇
  2003年   739篇
  2002年   751篇
  2001年   167篇
  2000年   120篇
  1999年   165篇
  1998年   223篇
  1997年   152篇
  1996年   133篇
  1995年   142篇
  1994年   122篇
  1993年   119篇
  1992年   138篇
  1991年   100篇
  1990年   82篇
  1989年   99篇
  1988年   89篇
  1987年   82篇
  1986年   83篇
  1985年   97篇
  1984年   129篇
  1983年   104篇
  1982年   114篇
  1981年   111篇
  1980年   101篇
  1979年   65篇
  1978年   69篇
  1977年   68篇
  1976年   60篇
  1975年   51篇
  1974年   58篇
  1973年   44篇
排序方式: 共有10000条查询结果,搜索用时 259 毫秒
991.
MEK is a dual-specificity kinase that activates the extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase upon agonist binding to receptors. The ERK/MAP kinase cascade is involved in cell fate determination in many organisms. In mammals, this pathway is proposed to regulate cell growth and differentiation. Genetic studies have shown that although a single Mek gene is present in Caenorhabditis elegans, Drosophila melanogaster, and Xenopus laevis, two Mek homologs, Mek1 and Mek2, are present in the mammalian cascade. The inactivation of the Mek1 gene leads to embryonic lethality and has revealed the unique role played by Mek1 during embryogenesis. To investigate the biological function of the second homolog, we have generated mice deficient in Mek2 function. Mek2 mutant mice are viable and fertile, and they do not present flagrant morphological alteration. Although several components of the ERK/MAP kinase cascade have been implicated in thymocyte development, no such involvement was observed for MEK2, which appears to be nonessential for thymocyte differentiation and T-cell-receptor-induced proliferation and apoptosis. Altogether, our findings demonstrate that MEK2 is not necessary for the normal development of the embryo and T-cell lineages, suggesting that the loss of MEK2 can be compensated for by MEK1.  相似文献   
992.
The cap-binding eukaryotic initiation factor eIF4E is phosphorylated by the mitogen-activated protein (MAP) kinase-interacting kinases (Mnk's). Three forms of the Mnk's exist in human cells: Mnk1, Mnk2a, and Mnk2b. These last two are derived from the same gene by alternative splicing and differ only at their C termini. While Mnk2a contains a MAP kinase-binding site in this region, Mnk2b lacks such a sequence and is much less readily activated by MAP kinases in vitro. Expression of Mnk2b in mammalian cells leads to increased phosphorylation of eIF4E, showing that it acts as an eIF4E kinase in vivo. While Mnk2a is cytoplasmic, a substantial amount of Mnk2b is found in the nucleus. Both enzymes contain a stretch of basic residues in their N termini that plays a role in binding to eIF4G and functions as a nuclear localization signal. Binding of eIF4G or nuclear import appears to be regulated by the C terminus of Mnk2a. Furthermore, the MAP kinase-binding site of Mnk2a regulates nuclear entry. Within the nucleus, Mnk2b and certain variants of Mnk2a that are present in the nucleus colocalize with the promyelocytic leukemia protein PML, which also binds to eIF4E.  相似文献   
993.
Excessive proliferation of vascular smooth muscle cells (VSMCs) is a critical element in the development of several vascular pathologies, particularly in atherosclerosis and in restenosis due to angioplasty. We have shown that butyrate, a powerful antiproliferative agent, a strong promoter of cell differentiation and an inducer of apoptosis inhibits VSMC proliferation at physiological concentrations with no cytotoxicity. In the present study, we have used cDNA array technology to unravel the molecular basis of the antiproliferative effect of butyrate on VSMCs. To assess the involvement of gene expression in butyrate-inhibited VSMC proliferation, proliferating VSMCs were exposed to 5 mmol/1 butyrate 1 through 5 days after plating. Expression profiles of 1,176 genes representing different functional classes in untreated control and butyrate treated VSMCs were compared. A total of 111 genes exhibiting moderate (2.0–5.0 fold to strong (> 5.0 fold) differential expression were identified. Analysis of these genes indicates that butyrate treatment mainly alters the expression of four different functional classes of genes, which include: 43 genes implicated in cell growth and differentiation, 13 genes related to stress response, 11 genes associated with vascular function and 8 genes normally present in neuronal cells. Examination of differentially expressed cell growth and differentiation related genes indicate that butyrate-inhibited VSMC proliferation appears to involve down-regulation of genes that encode several positive regulators of cell growth and up-regulation of some negative regulators of growth or differentiation inducers. Some of the down-regulated genes include proliferating cell nuclear antigen (PCNA), retinoblastoma susceptibility related protein p130 (pRb), cell division control protein 2 homolog (cdc2), cyclin B1, cell division control protein 20 homolog (p55cdc), high mobility group (HMG) 1 and 2 and several others. Whereas the up-regulated genes include cyclin D1, p21WAF1, p14INK4B/p15INK5B, Clusterin, inhibitor of DNA binding 1 (ID1) and others. On the other hand, butyrate-responsive stress-related genes include some of the members of heat shock protein (HSP), glutathione-s-transferase (GST), and glutathione peroxidase (GSH-PXs) and cytochrome P450 (CYP) families. Additionally, several genes related to vascular and neuronal function are also responsive to butyrate treatment. Although involvement of genes that encode stress response, vascular and neuronal functional proteins in cell proliferation is not clear, cDNA expression array data appear to suggest that they may play a role in the regulation of cell proliferation. However, cDNA expression profiles indicate that butyrate-inhibited VSMC proliferation involves combined action of a proportionally large number of both positive and negative regulators of growth, which ultimately causes growth arrest of VSMCs. Furthermore, these butyrate-induced differential gene expression changes are not only consistent with the antiproliferative effect of butyrate but are also in agreement with the roles that these gene products play in cell proliferation.  相似文献   
994.
The effects of the exposure to a static magnetic field (sMF) of 0.3 +/- 0.03 T on the Fusarium culmorum were investigated in vitro. sMF inhibition of mycelia growth was accompanied by morphological and biochemical changes. Fungal conidia germination and cell viability were also reduced. We provide evidence of the influence of sMF on Ca(2+)-dependent signal transduction pathways involved in conidia germination. Perturbation of these pathways by adding different compounds (i.e. CaCl(2), phorbol 12-myristate 13-acetate, neomycin, EGTA, LiCl) to the medium, suggested that exposed conidia are unable to mobilise calcium from intracellular stores and that the hindered mechanism may be IP(3)-dependent.  相似文献   
995.
996.
Varshney A  Ehrlich BE 《Neuron》2003,39(2):195-197
Huntingtin, a protein altered by polyglutamine expansion in Huntington's disease (Httexp), forms a signaling complex with the InsP3R, an intracellular calcium channel, and Htt-associated protein 1A (HAP1A). The addition of Httexp increases the InsP3R sensitivity to InsP3, which subsequently makes neurons hyperresponsive to stimulation and presumably more prone to neurodegenerative processes.  相似文献   
997.
The dramatic modifications of photosynthetic light harvesting antennae called phycobilisomes that occur during complementary chromatic adaptation in cyanobacteria are controlled by two separate photosensory systems. The first system involves the signal transduction components RcaE, RcaF and RcaC, which appear to make up a complex multistep phosphorelay. This system controls the light responsive expression of the cpcB2A2H2I2D2, cpeBA and cpeCDE operons, which encode phycobilisome proteins. The second system, which is not yet characterized, acts in concert with the first but only regulates the light responses of cpeBA and cpeCDE. We have generated and characterized a new mutant class, named the Tan mutants. In at least one member of this class, light-regulated RNA accumulation patterns are altered for cpeBA and cpeCDE, but not for cpcB2A2H2I2D2. Thus this mutant contains a lesion that may impair the operation of the second system. We demonstrate that several Tan mutants are the result of improper expression of the gene cotB. CotB has limited similarity to lyase class proteins, particularly those related to NblB, which is required for degradation of phycobilisomes in other cyanobacteria. Possible roles of CotB in the biogenesis of phycobilisomes are discussed.  相似文献   
998.
Caroverine, a multifunctional drug with antioxidant functions   总被引:1,自引:0,他引:1  
Here we show that lipid peroxidation of liposomal membranes was suppressed in the presence of Caroverine, a spasmolytic drug used in some countries. In order to understand the mechanism of this antioxidant action of Caroverine we studied the interaction of Caroverine with superoxide radicals, hydroxyl radicals and peroxynitrite. The results of the study show that the reaction of Caroverine with O2-* radicals is of marginal significance. However, it is efficient in removing peroxynitrite and a particular high reaction constant was found for reaction with hydroxyl radicals. The strong antioxidant activity of Caroverine is therefore based both on the partial prevention of the formation and the highly active scavenging of hydroxyl radicals.  相似文献   
999.
In aqueous solution, 4-[4-(dimethylamino)styryl]pyridine (DMASP) derivatives displayed dual fluorescence, in which excitation at either 469 or 360 nm produced an emission band near 600 nm. Increasing the viscosity of the environment intensified the fluorescence emission obtained at the longer wavelength of excitation, whereas the emission at the lower wavelength of excitation showed little change in intensity. Thus, using the ratio of the 600 nm emission obtained by exciting at 469 nm to that obtained with 360 nm excitation, it is possible to obtain a value related to the local viscosity that does not depend on the system parameters. The fluorescence emission of the dye in aqueous solution, as well as in living cells, is well suited for use with visible fluorescence spectroscopy. The N-carboxymethyl butyl ester DMASP derivative (1) was found to be irreversibly loaded into living smooth muscle cells, presumably because it is hydrolyzed by cellular esterases, transforming it into a membrane-impermeable fluorescent carboxylate DMASP derivative. (2) After calibrating 2 against glycerol/water and sucrose/water mixtures of known viscosity, the fluorescence ratio generated from cultured smooth muscle cells in dual-excitation mode gave an average intracellular viscosity of 4.5 cP. This value corresponds to those reported in the literature.  相似文献   
1000.
alpha2,6-Sialyltransferase (ST6Gal I) functions in the Golgi to terminally sialylate the N-linked oligosaccharides of glycoproteins. Interestingly, rat ST6Gal I is expressed as two isoforms, STtyr and STcys, that differ by a single amino acid in their catalytic domains. In this article, our goal was to evaluate more carefully possible differences in the catalytic activity and intra-Golgi localization of the two isoforms that had been suggested by earlier work. Using soluble recombinant STtyr and STcys enzymes and three asialoglycoprotein substrates for in vitro analysis, we found that the STcys isoform was somewhat more active than the STtyr isoform. However, we found no differences in isoform substrate choice when these proteins were expressed in Chinese hamster ovary cells, and sialylated substrates were detected by lectin blotting. Immuno-fluorescence and immunoelectron microscopy revealed differences in the relative levels of the isoforms found in the endoplasmic reticulum (ER) and Golgi of transiently expressing cells but similar intra-Golgi localization. STtyr was restricted to the Golgi in most cells, and STcys was found in both the ER and Golgi. The ER localization of STcys was especially pronounced with a C-terminal V5 epitope tag. Ultrastructural and deconvolution studies of immunostained HeLa cells expressing STtyr or STcys showed that within the Golgi both isoforms are found in medial-trans regions. The similar catalytic activities and intra-Golgi localization of the two ST6Gal I isoforms suggest that the particular isoform expressed in specific cells and tissues is not likely to have significant functional consequences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号