首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14459篇
  免费   1163篇
  15622篇
  2022年   108篇
  2021年   186篇
  2020年   123篇
  2019年   158篇
  2018年   225篇
  2017年   169篇
  2016年   340篇
  2015年   566篇
  2014年   565篇
  2013年   836篇
  2012年   1009篇
  2011年   960篇
  2010年   673篇
  2009年   529篇
  2008年   795篇
  2007年   872篇
  2006年   865篇
  2005年   829篇
  2004年   804篇
  2003年   744篇
  2002年   752篇
  2001年   179篇
  2000年   120篇
  1999年   171篇
  1998年   229篇
  1997年   156篇
  1996年   136篇
  1995年   142篇
  1994年   123篇
  1993年   127篇
  1992年   147篇
  1991年   102篇
  1990年   91篇
  1989年   101篇
  1988年   94篇
  1987年   82篇
  1986年   84篇
  1985年   97篇
  1984年   130篇
  1983年   102篇
  1982年   118篇
  1981年   109篇
  1980年   99篇
  1979年   67篇
  1978年   70篇
  1977年   64篇
  1976年   58篇
  1975年   51篇
  1974年   57篇
  1971年   45篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
821.
The receptor tyrosine kinase RET, with a known role in embryonic development and in human pathologies, is alternatively spliced to yield at least two functional isoforms, which differ only in their carboxyl terminal. Enigma protein is a member of the PDZ-LIM family and is known to interact with the short isoform of RET/PTC2, a chimeric oncoprotein isolated from papillary thyroid carcinoma. Here, we show that Enigma also interacts in intact cells with the short isoform of RET-wt and of its pathologic mutants associated to MEN2 syndromes, RET-C634R and RET-M918T. In contrast, Enigma binds all the corresponding RET long isoforms very poorly and colocalizes with short but not long RET/PTC2 isoforms. The RET docking tyrosine for Enigma is the last but one before the divergence between the two isoforms and we demonstrated that short-isoform-specific amino acid residues +2 to +4 to this tyrosine are required for the interaction of RET/PTC2 with Enigma.  相似文献   
822.
823.
Phosphatidylinositol (PtdIns) 4-kinases catalyze the conversion of PtdIns to PtdIns 4-phosphate, the major precursor of phosphoinositides that regulates a vast array of cellular processes. Based on enzymatic differences, two classes of PtdIns 4-kinase have been distinguished termed Types II and III. Type III kinases, which belong to the phosphatidylinositol (PI) 3/4-kinase family, have been extensively characterized. In contrast, little is known about the Type II enzymes (PI4KIIs), which have been cloned and sequenced very recently. PI4KIIs bear essentially no sequence similarity to other protein or lipid kinases; hence, they represent a novel and distinct branch of the kinase superfamily. Here we define the minimal catalytic domain of a rat PI4KII isoform, PI4KIIalpha, and identify conserved amino acid residues required for catalysis. We further show that the catalytic domain by itself determines targeting of the kinase to membrane rafts. To verify that the PI4KII family extends beyond mammalian sources, we expressed and characterized Drosophila PI4KII and its catalytic domain. Depletion of PI4KII from Drosophila cells resulted in a severe reduction of PtdIns 4-kinase activity, suggesting the in vivo importance of this enzyme.  相似文献   
824.
Phosphoinositides have a pivotal role as precursors to important second messengers and as bona fide signaling and scaffold targeting molecules. Phosphatidylinositol 4-kinases (PtdIns 4-kinases or PI4Ks) are at the apex of the phosphoinsitide cascade. Sequence analysis revealed that mammalian cells contain two type II PtdIns 4-kinase isoforms, now termed PI4KIIalpha and PI4KIIbeta. PI4KIIalpha was cloned first. It is tightly membrane-associated and behaves as an integral membrane protein. In this study, we cloned PI4KIIbeta and compared the two isoforms by monitoring the distribution of endogenous and overexpressed proteins, their modes of association with membranes, their response to growth factor stimulation or Rac-GTP activation, and their kinetic properties. We find that the two kinases have different properties. PI4KIIbeta is primarily cytosolic, and it associates peripherally with plasma membranes, endoplasmic reticulum, and the Golgi. In contrast, PI4KIIalpha is primarily Golgi-associated. Platelet-derived growth factor promotes PI4KIIbeta recruitment to membrane ruffles. This effect is potentially mediated through Rac; overexpression of the constitutively active RacV12 induces membrane ruffling, increases PI4KIIbeta translocation to the plasma membrane, and stimulates its activity. The dominant-negative RacN17 blocks plasma membrane association and inhibits activity. RacV12 does not boost the catalytic activity of PI4KIIalpha further, probably because it is constitutively membrane-bound and already activated. Membrane recruitment is an important mechanism for PI4KIIbeta activation, because microsome-bound PI4KIIbeta is 16 times more active than cytosolic PI4KIIbeta. Membrane-associated PI4KIIbeta is as active as membrane-associated PI4KIIalpha and has essentially identical kinetic properties. We conclude that PI4KIIalpha and PI4KIIbeta may have partially overlapping, but not identical, functions. PI4KIIbeta is activated strongly by membrane association to stimulate phosphatidylinositol 4,5-bisphosphate synthesis at the plasma membrane. These findings provide new insight into how phosphoinositide cascades are propagated in cells.  相似文献   
825.
Pyruvate kinase type M(2) from Morris hepatoma 7777 tumour cell nuclei and cytosol, in contrast to types L and M(2) from nuclei and cytosol of normal rat liver, shows the histone H(1) kinase activity. Moreover, in the presence of L-cysteine and without ADP it converts 2-phosphoenolpyruvate (PEP) to pyruvate while in the presence of L-arginine or L-histidine does not. L-Cysteine markedly stimulates the activity of histone H(1) kinase transferring a phosphate group from PEP to, as results suggested, the epsilon -amino group of L-lysine of histone H(1). This, L-cysteine which is known to inhibit the activity of pyruvate kinase type M(2) from neoplastic cells transfering a phosphate from PEP to ADP, can act as a control factor champing the direction of enzymatic reaction in cancer cells.  相似文献   
826.
Seven enzymatic systems in F1 Aegilops kotschyi and Ae. biuncialis x Secale cereale hybrids, Aegilops kotschyi x S. cereale amphiploids and their parental species (Ae. kotschyi, Ae. biuncialis and S. cereale) were analysed by starch and polyacrylamide gel electrophoresis. Five of them (phosphoglucose isomerase, glutamic oxalacetic transaminase, esterase, acid phosphatase, and diaphorase) were polymorphic and two (malic dehydrogenase and superoxide dismutase) were monomorphic. Several isophorms of phosphoclucose isomerase, esterase, acid phosphatase, and diaphorase were detected in some hybrids and amphiploids, but absent in the parents. The role of regulators, translocations and recombination is discussed in relation to the origin of these new isophorms. Some parental isozymes were absent both in hybrids and amphiploids, probably as a result of the suppression of structural genes in new combinations of the three genomes.  相似文献   
827.
Cytokine regulation of pulmonary fibrosis in scleroderma   总被引:7,自引:0,他引:7  
Pulmonary fibrosis occurs in up to 70% of scleroderma patients and progresses to cause severe restrictive lung disease in about 15% of patients. The mechanisms that cause pulmonary fibrosis in scleroderma remain incompletely understood. Increased amounts of mRNA or protein for multiple profibrotic cytokines and chemokines have been identified in lung tissue or broncholveolar lavage samples from scleroderma patients, when compared to healthy controls. These cytokines include transforming growth factor (TGF)-β, connective tissue growth factor (CTGF), platelet-derived growth factor (PDGF), oncostatin M (OSM), monocyte chemotactic factor-1 and pulmonary and activation-regulated chemokine (PARC). Potential cellular sources of these profibrotic cytokines and chemokines in scleroderma lung disease include alternatively activated macrophages, activated CD8+ T cells, eosinophils, mast cells, epithelial cells and fibroblasts themselves. This review summarizes the literature on involvement of cytokines and chemokines in the development of pulmonary fibrosis in scleroderma.  相似文献   
828.
829.
When exposed to stress-provoking environmental conditions such as those of ground waters, many medically important bacteria have been shown to be capable of activating a survival strategy known as the viable but non-culturable (VBNC) state. In this state bacteria are no longer culturable on conventional growth media, but the cells maintain their viability and pathogenicity genes/factors and can start dividing again, in a part of the cell population, upon restoration of favourable environmental conditions. Little is known about the genetic mechanisms underlying the VBNC state. In this study we show evidence of involvement of the rpoS gene in persistence of Escherichia coli in the VBNC state. The kinetics of entry into the non-culturable state and duration of cell viability were measured in two E. coli mutants carrying an inactivated rpoS gene and compared with those of the parents. For these experiments, laboratory microcosms consisting of an artificial oligotrophic medium incubated at 4 degrees C were used. The E. coli parental strains reached the non-culturable state in 33 days when the plate counts were evaluated on Luria-Bertani agar containing sodium pyruvate, whereas cells of the rpoS mutants lost their culturability in only 21 days. Upon reaching unculturability the parents yielded respiring cells and cells with intact membranes for at least the next three weeks and resuscitation was allowed during this time. In contrast, the RpoS- mutant cells demonstrated intact membranes for only two weeks and a very restricted (<7 days) resuscitation capability. Guanosine 3',5'-bispyrophosphate (ppGpp) acts as a positive regulator during the production and functioning of RpoS. A mutant deficient in ppGpp production behaved like the rpoS mutants, while overproducers of ppGpp displayed a vitality at least comparable to that of RpoS+ strains. These results suggest that the E. coli parental strains enter the VBNC state which lasts for, at least, three weeks, after which apparently all the cells die. The rpoS mutants do not activate this survival strategy and early die. This implies involvement of the rpoS gene in E. coli persistence in the VBNC state.  相似文献   
830.
The "law of the minimum" (Liebig's law) states that usually one nutrient restricts the maximum quantity of biomass that can be produced within a system, whereas all other nutrients are in excess. This general rule has been applied also to the growth of microorganisms, e.g., by adjusting the relative concentrations of the individual nutrients in growth media such that one of them, in the case of heterotrophic microbes, usually the carbon source, determines the maximum cell density that can be obtained in a culture. However, experimental data demonstrated that growth of microbial cultures can be limited simultaneously by two or more nutrients. These authors reported that during growth of bacteria and yeasts at a constant dilution rate in the chemostat, three distinct growth regimes were recognised as a function of the C:N ratio in the inflowing medium: (1) a clearly carbon-limited regime with the nitrogen source in excess, (2) a transition ("double-nutrient-limited") growth regime where both the carbon and the nitrogen source were below the detection limit, and (3) a clearly nitrogen-limited growth regime with the carbon source in excess. Subsequent calculations suggested that the extension and position of this double-nutrient-limited zone should be strongly dependent on the imposed growth rate: Whereas it is very narrow at high growth rates it should become very broad during slow growth. This pattern as a function of growth rate has now been confirmed for a number of different organisms. In industrial processes, microbial growth is always in some way controlled by the limited availability of nutrients, and limitation of specific nutrients is frequently used to force microbial cultures into a productive physiological state. This article will discuss what the consequences of multiple-nutrient-limited growth are for industrial processes and how the concept might be applied. Specific examples will be given that demonstrate the advantages and the potential of multiple nutrient-limited growth conditions for industrial production processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号