首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106727篇
  免费   1377篇
  国内免费   884篇
  108988篇
  2022年   103篇
  2021年   176篇
  2020年   123篇
  2019年   158篇
  2018年   12009篇
  2017年   10782篇
  2016年   7745篇
  2015年   1138篇
  2014年   826篇
  2013年   1093篇
  2012年   5167篇
  2011年   13667篇
  2010年   12584篇
  2009年   8696篇
  2008年   10504篇
  2007年   12143篇
  2006年   1098篇
  2005年   1320篇
  2004年   1749篇
  2003年   1742篇
  2002年   1514篇
  2001年   417篇
  2000年   271篇
  1999年   188篇
  1998年   225篇
  1997年   172篇
  1996年   140篇
  1995年   140篇
  1994年   129篇
  1993年   147篇
  1992年   158篇
  1991年   133篇
  1990年   87篇
  1989年   107篇
  1988年   105篇
  1987年   93篇
  1986年   85篇
  1985年   99篇
  1984年   136篇
  1983年   119篇
  1982年   115篇
  1981年   111篇
  1980年   100篇
  1979年   66篇
  1978年   69篇
  1977年   64篇
  1975年   59篇
  1974年   59篇
  1972年   290篇
  1971年   320篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
112.
Method for production and regeneration of Lactobacillus delbrueckii protoplasts are described. The protoplasts were obtained by treatment with a mixture of lysozyme and mutanolysin in protoplast buffer at pH 6.5 with different osmotic stabilizers. The protoplasts were regenerated on deMan, Rogosa and Sharpe (MRS) with various osmotic stabilizers. Maximum protoplast formation was obtained in protoplast buffer with sucrose as an osmotic stabilizer using a combination of lysozyme (1 mg/ml) and mutanolysin (10 μg/ml). Maximum protoplast regeneration was obtained on MRS medium with sucrose (0.5 M) as an osmotic stabilizer. The regeneration medium was also applicable to other species of lactobacilli as well. This is, to our knowledge, the first report on protoplast formation and efficient regeneration in case of L. delbrueckii.  相似文献   
113.
114.
115.
116.
Shallow-water vegetated estuarine habitats, notably seagrass, mangrove and saltmarsh, are known to be important habitats for many species of small or juvenile fish in temperate Australia. However, the movement of fish between these habitats is poorly understood, and yet critical to the management of the estuarine fisheries resource. We installed a series of buoyant pop nets in adjacent stands of seagrass, mangrove and saltmarsh in order to determine how relative abundance of fishes varied through lunar cycles. Nets were released in all habitats at the peak of the monthly spring tide for 12 months, and in the seagrass habitat at the peak of the neap tide also. The assemblage of fish in each habitat differed during the spring tides. The seagrass assemblage differed between spring and neap tide, with the neap tide assemblage showing greater abundances of fish, particularly those species which visited the adjacent habitats when inundated during spring tides. The result supports the hypothesis that fish move from the seagrass to the adjacent mangrove and saltmarsh during spring tides, taking advantage of high abundances of zooplankton, and use seagrass as a refuge during lower tides. The restoration and preservation of mangrove and saltmarsh utility as fish habitat may in some situations be linked to the proximity of available seagrass.  相似文献   
117.
Eberhard Gischler 《Facies》2010,56(2):173-177
Shallow fore-reef areas worldwide are usually characterized by spurs and grooves. A comparison of examples from the three world oceans suggests that Indo-Pacific spurs and grooves are shaped predominantly by erosion, whereas western Atlantic spur and groove systems are largely a product of constructive processes. I propose that this difference is caused by regional differences in Holocene sea-level change, which controlled exposure to waves and currents, and reef-accretion rates. The transgressive–regressive sea-level curve in the Indo-Pacific realm, i.e., the Mid-to-Late Holocene sea-level fall in these areas has maintained high-energy conditions in the shallow fore reef. Higher exposure to waves and currents favors erosion and leads to a dominance of crustose coralline algae that have relatively slow growth rates. In the western Atlantic, the transgressive Holocene sea level has caused Mid-to-Late Holocene deepening and has maintained accommodation space for reef accretion. Fast-growing acroporid corals thrive under lower exposure and are more common than coralline algae. The fossil record of the spur and groove system is rather poor, which is probably a consequence of the need of excellent, three-dimensional outcrops for identification.  相似文献   
118.
119.
Previous studies by us and others established that cell-cell adhesion is mediated by specific carbohydrate-to-carbohydrate interaction (CCI). Those previous studies were based on various biochemical and biophysical approaches, including the use of labeled glycosyl epitopes with fluorescent tag. However, these methods ideally require that the glycosyl epitope must be fixed to a solid phase molecule, preferably with multivalency. The purpose of the present study is to establish a CCI process using specific glycosyl residues conjugated to biotinylated diaminopyridine (BAP), and to observe: (i) clear occurrence of homotypic CCI between “Os Fr.B” having 5–6 GlcNAc termini, vs. absence of such homotypic CCI between “Os Fr.1” having 2 GlcNAc termini; (ii) occurrence of heterotypic CCI between GM3 ganglioside and Os Fr.B, vs. absence of such heterotypic CCI between GM3 and Os Fr.1. Interaction between Os Fr.B-BAP conjugate and Os Fr.B-ceramide mimetic (Os Fr.B-mCer) was demonstrated based on two experiments: (i) dose-dependent binding of Os Fr.B-BAP conjugate to polystyrene plates coated with Os Fr.B-mCer was observed in the presence of bivalent cation, a prerequisite for all CCI processes, and such binding was abolished by EDTA; (ii) binding between equal nanomolar Os Fr.B-BAP and Os Fr.B-mCer was inhibited by mM concentration Os Fr.B without conjugate, in dose-dependent manner. Thus, cell adhesion processes based on homotypic CCI between N-linked glycans having multiple GlcNAc termini, and heterotypic CCI between GM3 and such glycans, were clearly observed using BAP conjugates of glycosyl epitopes.  相似文献   
120.

Background  

Many molecules are flexible and undergo significant shape deformation as part of their function, and yet most existing molecular shape comparison (MSC) methods treat them as rigid bodies, which may lead to incorrect shape recognition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号