首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111151篇
  免费   1835篇
  国内免费   812篇
  2022年   121篇
  2021年   231篇
  2020年   165篇
  2019年   212篇
  2018年   12052篇
  2017年   10836篇
  2016年   7822篇
  2015年   1276篇
  2014年   1009篇
  2013年   1291篇
  2012年   5433篇
  2011年   13890篇
  2010年   12742篇
  2009年   8841篇
  2008年   10710篇
  2007年   12326篇
  2006年   1283篇
  2005年   1517篇
  2004年   1953篇
  2003年   1937篇
  2002年   1675篇
  2001年   592篇
  2000年   419篇
  1999年   331篇
  1998年   300篇
  1997年   252篇
  1996年   201篇
  1995年   185篇
  1994年   192篇
  1993年   191篇
  1992年   244篇
  1991年   205篇
  1990年   158篇
  1989年   175篇
  1988年   162篇
  1987年   133篇
  1986年   123篇
  1985年   163篇
  1984年   178篇
  1983年   154篇
  1982年   154篇
  1981年   135篇
  1980年   124篇
  1979年   107篇
  1978年   91篇
  1977年   85篇
  1976年   82篇
  1974年   86篇
  1972年   311篇
  1971年   336篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
951.
Patients with sepsis are often immune suppressed, and experimental mouse models of sepsis also display this feature. However, acute sepsis in mice is also characterized by a generalized B cell activation and plasma cell differentiation, resulting in a marked increase in serum antibody concentration. Its effects on humoral memory are not clearly defined. We measured the effects of experimental sepsis on long-term immunological memory for a defined antigen: we induced colon ascendens stent peritonitis (CASP) 8 weeks after 2 rounds of immunization with ovalbumin. Four weeks later, the antigen-specific bone marrow plasma cell count had doubled in immunized non-septic animals, but remained unchanged in immunized septic animals. Sepsis also caused a decrease in antigen-specific serum antibody concentration. We conclude that sepsis weakens humoral memory by impeding the antigen-specific plasma cell pool’s development, which is not complete 8 weeks after secondary immunization.  相似文献   
952.
Visceral leishmaniasis (VL) is a vector-borne disease affecting humans and domestic animals that constitutes a serious public health problem in many countries. Although many antigens have been examined so far as protein- or DNA-based vaccines, none of them conferred complete long-term protection. The use of the lizard non-pathogenic to humans Leishmania (L.) tarentolae species as a live vaccine vector to deliver specific Leishmania antigens is a recent approach that needs to be explored further. In this study, we evaluated the effectiveness of live vaccination in protecting BALB/c mice against L. infantum infection using prime-boost regimens, namely Live/Live and DNA/Live. As a live vaccine, we used recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinases (CPA and CPB without its unusual C-terminal extension (CPB-CTE)) as a tri-fusion gene. For DNA priming, the tri-fusion gene was encoded in pcDNA formulated with cationic solid lipid nanoparticles (cSLN) acting as an adjuvant. At different time points post-challenge, parasite burden and histopathological changes as well as humoral and cellular immune responses were assessed. Our results showed that immunization with both prime-boost A2-CPA-CPB-CTE-recombinant L. tarentolae protects BALB/c mice against L. infantum challenge. This protective immunity is associated with a Th1-type immune response due to high levels of IFN-γ production prior and after challenge and with lower levels of IL-10 production after challenge, leading to a significantly higher IFN-γ/IL-10 ratio compared to the control groups. Moreover, this immunization elicited high IgG1 and IgG2a humoral immune responses. Protection in mice was also correlated with a high nitric oxide production and low parasite burden. Altogether, these results indicate the promise of the A2-CPA-CPB-CTE-recombinant L. tarentolae as a safe live vaccine candidate against VL.  相似文献   
953.
Morphemes are the smallest meaningful parts of words and therefore represent a natural unit to study the evolution of words. To analyze the influence of language change on morphemes, we performed a large scale analysis of German and English vocabulary covering the last 200 years. Using a network approach from bioinformatics, we examined the historical dynamics of morphemes, the fixation of new morphemes and the emergence of words containing existing morphemes. We found that these processes are driven mainly by the number of different direct neighbors of a morpheme in words (connectivity, an equivalent to family size or type frequency) and not its frequency of usage (equivalent to token frequency). This contrasts words, whose survival is determined by their frequency of usage. We therefore identified features of morphemes which are not dictated by the statistical properties of words. As morphemes are also relevant for the mental representation of words, this result might enable establishing a link between an individual’s perception of language and historical language change.  相似文献   
954.

Background

Chronic kidney disease (CKD) independently increases the risk of death and cardiovascular disease (CVD) in the general population. However, the relationship between estimated glomerular filtration rate (eGFR) and CVD/death risk in a general population at low risk of CVD has not been explored so far.

Design

Baseline and longitudinal data of 1465 men and 1459 women aged 35-74 years participating to the MATISS study, an Italian general population cohort, were used to evaluate the role of eGFR in the prediction of all-cause mortality and incident CVD.

Methods

Bio-bank stored sera were used to evaluate eGFR at baseline. Serum creatinine was measured on thawed samples by means of an IDMS-calibrated enzymatic method. eGFR was calculated by the CKD-EPI formula.

Results

At baseline, less than 2% of enrolled persons had eGFR < 60 mL/min/1.73m2 and more than 70% had a 10-year cardiovascular risk score < 10%. In people 60 or more years old, the first and the last eGFR quintiles (<90 and ≥109 mL/min/1.73m2, respectively) were associated to an increased risk for both all-cause mortality (hazard ratio 1.6, 95% confidence interval 1.2-2.1 and 4.3, 1.6-11.7, respectively) and incident CVD (1.6, 1.0-2.4 and 7.0, 2.2-22.9, respectively), even if adjusted for classical risk factors.

Conclusions

These findings strongly suggest that in an elderly, general population at low risk of CVD and low prevalence of reduced renal filtration, even a modest eGFR reduction is related to all-cause mortality and CVD incidence, underlying the potential benefit to this population of considering eGFR for their risk prediction.  相似文献   
955.

Background

Delirium is a serious and common postoperative complication, especially in frail elderly patients. The aim of this study was to evaluate the effect of a geriatric liaison intervention in comparison with standard care on the incidence of postoperative delirium in frail elderly cancer patients treated with an elective surgical procedure for a solid tumour.

Methods

Patients over 65 years of age who were undergoing elective surgery for a solid tumour were recruited to a multicentre, prospective, randomized, controlled trial. The patients were randomized to standard treatment versus a geriatric liaison intervention. The intervention consisted of a preoperative geriatric consultation, an individual treatment plan targeted at risk factors for delirium, daily visits by a geriatric nurse during the hospital stay and advice on managing any problems encountered. The primary outcome was the incidence of postoperative delirium. The secondary outcome measures were the severity of delirium, length of hospital stay, complications, mortality, care dependency, quality of life, return to an independent preoperative living situation and additional care at home.

Results

In total, the data of 260 patients were analysed. Delirium occurred in 31 patients (11.9%), and there was no significant difference between the incidence of delirium in the intervention group and the usual-care group (9.4% vs. 14.3%, OR: 0.63, 95% CI: 0.29–1.35).

Conclusions

Within this study, a geriatric liaison intervention based on frailty for the prevention of postoperative delirium in frail elderly cancer patients undergoing elective surgery for a solid tumour has not proven to be effective.

Trial Registration

Nederlands Trial Register Trial ID NTR 823  相似文献   
956.
957.
Superparamagnetic iron oxide (SPIO) and ultra small superparamagnetic iron oxide (USPIO) nanoparticles have been developed as magnetic resonance imaging (MRI) contrast agents. Iron oxide nanoparticles, that become superparamagnetic if the core particle diameter is ~ 30nm or less, present R1 and R2 relaxivities which are much higher than those of conventional paramagnetic gadolinium chelates. Generally, these magnetic particles are coated with biocompatible polymers that prevent the agglomeration of the colloidal suspension and improve their blood distribution profile. In spite of their potential as MRI blood contrast agents, the biomedical application of iron oxide nanoparticles is still limited because of their intravascular half-life of only few hours; such nanoparticles are rapidly cleared from the bloodstream by macrophages of the reticulo-endothelial system (RES). To increase the life span of these MRI contrast agents in the bloodstream we proposed the encapsulation of SPIO nanoparticles in red blood cells (RBCs) through the transient opening of cell membrane pores. We have recently reported results obtained by applying our loading procedure to several SPIO nanoparticles with different chemical physical characteristics such as size and coating agent. In the current investigation we showed that the life span of iron-based contrast agents in the mice bloodstream was prolonged to 12 days after the intravenous injection of murine SPIO-loaded RBCs. Furthermore, we developed an animal model that implicates the pretreatment of animals with clodronate to induce a transient suppression of tissue macrophages, followed by the injection of human SPIO-loaded RBCs which make it possible to encapsulate nanoparticle concentrations (5.3-16.7mM Fe) higher than murine SPIO-loaded RBCs (1.4-3.55mM Fe). The data showed that, when human RBCs are used as more capable SPIO nanoparticle containers combined with a depletion of tissue macrophages, Fe concentration in animal blood is 2-3 times higher than iron concentration obtained by the use of murine SPIO-loaded RBCs.  相似文献   
958.
Niemann-Pick Type C (NPC) disease is an autosomal recessive neurodegenerative disorder caused in most cases by mutations in the NPC1 gene. NPC1-deficiency is characterized by late endosomal accumulation of cholesterol, impaired cholesterol homeostasis, and a broad range of other cellular abnormalities. Although neuronal abnormalities and glial activation are observed in nearly all areas of the brain, the most severe consequence of NPC1-deficiency is a near complete loss of Purkinje neurons in the cerebellum. The link between cholesterol trafficking and NPC pathogenesis is not yet clear; however, increased oxidative stress in symptomatic NPC disease, increases in mitochondrial cholesterol, and alterations in autophagy/mitophagy suggest that mitochondria play a role in NPC disease pathology. Alterations in mitochondrial function affect energy and neurotransmitter metabolism, and are particularly harmful to the central nervous system. To investigate early metabolic alterations that could affect NPC disease progression, we performed metabolomics analyses of different brain regions from age-matched wildtype and Npc1 -/- mice at pre-symptomatic, early symptomatic and late stage disease by 1H-NMR spectroscopy. Metabolic profiling revealed markedly increased lactate and decreased acetate/acetyl-CoA levels in Npc1 -/- cerebellum and cerebral cortex at all ages. Protein and gene expression analyses indicated a pre-symptomatic deficiency in the oxidative decarboxylation of pyruvate to acetyl-CoA, and an upregulation of glycolytic gene expression at the early symptomatic stage. We also observed a pre-symptomatic increase in several indicators of oxidative stress and antioxidant response systems in Npc1 -/- cerebellum. Our findings suggest that energy metabolism and oxidative stress may present additional therapeutic targets in NPC disease, especially if intervention can be started at an early stage of the disease.  相似文献   
959.
A number of studies have tried to exploit subtle phase differences in BOLD time series to resolve the order of sequential activation of brain regions, or more generally the ability of signal in one region to predict subsequent signal in another region. More recently, such lag-based measures have been applied to investigate directed functional connectivity, although this application has been controversial. We attempted to use large publicly available datasets (FCON 1000, ADHD 200, Human Connectome Project) to determine whether consistent spatial patterns of Granger Causality are observed in typical fMRI data. For BOLD datasets from 1,240 typically developing subjects ages 7–40, we measured Granger causality between time series for every pair of 7,266 spherical ROIs covering the gray matter and 264 seed ROIs at hubs of the brain’s functional network architecture. Granger causality estimates were strongly reproducible for connections in a test and replication sample (n=620 subjects for each group), as well as in data from a single subject scanned repeatedly, both during resting and passive video viewing. The same effect was even stronger in high temporal resolution fMRI data from the Human Connectome Project, and was observed independently in data collected during performance of 7 task paradigms. The spatial distribution of Granger causality reflected vascular anatomy with a progression from Granger causality sources, in Circle of Willis arterial inflow distributions, to sinks, near large venous vascular structures such as dural venous sinuses and at the periphery of the brain. Attempts to resolve BOLD phase differences with Granger causality should consider the possibility of reproducible vascular confounds, a problem that is independent of the known regional variability of the hemodynamic response.  相似文献   
960.
Filament bundles (rods) of cofilin and actin (1:1) form in neurites of stressed neurons where they inhibit synaptic function. Live-cell imaging of rod formation is hampered by the fact that overexpression of a chimera of wild type cofilin with a fluorescent protein causes formation of spontaneous and persistent rods, which is exacerbated by the photostress of imaging. The study of rod induction in living cells calls for a rod reporter that does not cause spontaneous rods. From a study in which single cofilin surface residues were mutated, we identified a mutant, cofilinR21Q, which when fused with monomeric Red Fluorescent Protein (mRFP) and expressed several fold above endogenous cofilin, does not induce spontaneous rods even during the photostress of imaging. CofilinR21Q-mRFP only incorporates into rods when they form from endogenous proteins in stressed cells. In neurons, cofilinR21Q-mRFP reports on rods formed from endogenous cofilin and induced by all modes tested thus far. Rods have a half-life of 30–60 min upon removal of the inducer. Vesicle transport in neurites is arrested upon treatments that form rods and recovers as rods disappear. CofilinR21Q-mRFP is a genetically encoded rod reporter that is useful in live cell imaging studies of induced rod formation, including rod dynamics, and kinetics of rod elimination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号