首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   670220篇
  免费   58853篇
  国内免费   1031篇
  2018年   17586篇
  2017年   16473篇
  2016年   14654篇
  2015年   9061篇
  2014年   10411篇
  2013年   15228篇
  2012年   21466篇
  2011年   31307篇
  2010年   24759篇
  2009年   20222篇
  2008年   26506篇
  2007年   28988篇
  2006年   15735篇
  2005年   15740篇
  2004年   15826篇
  2003年   15572篇
  2002年   15111篇
  2001年   25766篇
  2000年   26015篇
  1999年   20490篇
  1998年   7203篇
  1997年   7452篇
  1996年   7074篇
  1995年   6447篇
  1994年   6489篇
  1993年   6454篇
  1992年   17162篇
  1991年   16773篇
  1990年   16404篇
  1989年   16471篇
  1988年   15097篇
  1987年   14346篇
  1986年   13251篇
  1985年   13395篇
  1984年   10922篇
  1983年   9472篇
  1982年   7024篇
  1981年   6203篇
  1980年   6049篇
  1979年   10425篇
  1978年   8171篇
  1977年   7277篇
  1976年   6935篇
  1975年   7772篇
  1974年   8319篇
  1973年   8147篇
  1972年   8071篇
  1971年   7302篇
  1970年   5893篇
  1969年   5513篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
991.
Recent reports suggest that prostaglandins, rather than cAMP, play a major role in mediating cholera toxin-induced water and electrolyte secretion from rabbit intestinal loops. We examined the role of prostaglandins in mediating toxin-induced pancreatic and gastric exocrine secretion. In these tissues, indomethacin, a potent inhibitor of prostaglandin synthesis, did not alter the stimulatory effects of cholera toxin on increases in cellular cAMP or enzyme secretion. Moreover, the addition of cholera toxin did not alter prostaglandin E2 release from either tissue. In contrast to their effects in rabbit intestinal loops, prostaglandins do not regulate cholera toxin-induced enzyme secretion from the guinea pig pancreas or stomach.  相似文献   
992.
993.
994.
995.
996.
The seasonal chronology of the events of the reproductive cycle, and changes in the structure and function of the primary and accessory organs of the male bent-winged bat, Miniopterus schreibersii, were studied at latitude 37 degrees S in temperate southeastern Australia. The testicular cycle commenced in late spring (November), and sperm appeared in the seminiferous tubules and epididymides in early fall (March). The cycle of the accessory sex gland complex generally paralleled the testicular cycle, reaching maximum hypertrophy at the time of insemination in late fall (April/May). Thereafter, the primary and secondary sex glands (except the ampullary gland) involuted as the animals entered winter torpor. However, a cauda epididymal store of sperm persisted until late spring, and sperm were often observed, as well, in the ampullary gland duct and alveoli throughout winter. This study has confirmed that male Miniopterus differs from other vespertilionids in that accessory gland activity declines following the fall breeding in keeping with the fact that, unlike in other vespertilionids, insemination, ovulation and conception are concurrent events in the fall in this species. The reduced secretory status of the Leydig cells and exceptionally low levels of circulating androgens throughout the year, in combination with the presence of viable epididymidal sperm for most of gestation, are all interesting features of this reproductive cycle.  相似文献   
997.
Two species (tomato and cucumber) which are not hosts to Orobanche crenata but which are hosts to other species of Orobanche not only failed to produce the compound required to trigger O. crenata to germinate but produced germination inhibitors which stopped germination even in the presence of a suitable stimulant. This suggested the possibility of using germination inhibitors to control at least some species of Orobanche. The question whether host species produce inhibitors as well as stimulants has not however been resolved.  相似文献   
998.
In this study, atomic force microscopy (AFM) is used to investigate the alterations of the poroelastic properties of hepatocellular carcinoma (SMMC-7721) cells treated with fullerenol. The SMMC-7721 cells were subject to AFM-based creep tests, and a corresponding poroelastic indentation model was used to determine the poroelastic parameters by curve fitting. Comparative analyses indicated that the both permeability and diffusion of fullerenol-treated cells increased significantly while their elastic modulus decreased by a small amount. From the change in the trend of the determined parameter, we verified the corresponding alternations of cytoskeleton (mainly filaments actin), which was reported by the previous study using confocal imaging method. Our investigation on SMMC-7721 cell reveals that the poroelastic properties could provide a better understanding how the cancer cells are affected by fullerenol or potentially other drugs which could find possible applications in drug efficacy test, cancer diagnosis and secure therapies.  相似文献   
999.
Role of Thidiazuron (TDZ) in inducing adventitious organogenesis in Pongamia was studied. TDZ at different concentrations (0, 0.45, 2.27, 4.54, 6.71, 9.08, 11.35, 13.12 and 22.71 μM) were used for induction of caulogenic bud formation in deembryonated cotyledon explants. Each cotyledon was cut into three segments and identified as proximal, middle and distal. Duration of TDZ exposure, influence of the segment and orientation of the explant were studied. TDZ at 11.35 μM concentration was optimum for the induction of shoots and rapid elongation. Shoots induced at higher concentration elongated after several passages in growth regulator free medium, thereby extending the period of differentiation. Exposure of the explant for 20 days yielded more number of buds than 10 days. Proximal segment of the cotyledon was more responsive. Contact of abaxial surface in the medium was more effective and generated more buds than the adaxial side. Buds differentiated and elongated on transfer to MS basal medium for 8–12 passages of 15 days each. Rooting and elongation of shoots was achieved in charcoal supplemented half-strength MS medium. Rooted plantlets survived on transfer to sand soil mixture. The plants were hardened and transferred to green house. This is the first report on in vitro regeneration of Pongamia pinnata via adventitious organogenesis using TDZ. This protocol may find application in studies in genetic transformation, isolation of somaclonal variants and in induction of mutants. It also provides a system to study the inhibitory role of TDZ on shoot differentiation.  相似文献   
1000.
Abstract. Objectives: The ADAMs (a disintegrin and metalloproteinase) enzymes compose a family of membrane‐bound proteins characterized by their multi‐domain structure and ADAM‐12 expression is elevated in human non‐small cell lung cancers. The aim of this study was to investigate the roles played by ADAM‐12 in critical steps of bronchial cell transformation during carcinogenesis. Materials and methods: To assess the role of ADAM‐12 in tumorigenicity, BEAS‐2B cells were transfected with a plasmid encoding human full‐length ADAM‐12 cDNA, and then the effects of ADAM‐12 overexpression on cell behaviour were explored. Treatment of clones with heparin‐binding epidermal growth factor (EGF)‐like growth factor (HB‐EGF) neutralizing antibodies as well as an EGFR inhibitor allowed the dissection of mechanisms regulating cell proliferation and apoptosis. Results: Overexpression of ADAM‐12 in BEAS‐2B cells promoted cell proliferation. ADAM‐12 overexpressing clones produced higher quantities of HB‐EGF in their culture medium which may rely on membrane‐bound HB‐EGF shedding by ADAM‐12. Targeting HB‐EGF activity with a neutralizing antibody abrogated enhanced cell proliferation in the ADAM‐12 overexpressing clones. In sharp contrast, targeting of amphiregulin, EGF or transforming growth factor‐α failed to influence cell proliferation; moreover, ADAM‐12 transfectants were resistant to etoposide‐induced apoptosis and the use of a neutralizing antibody against HB‐EGF activity restored rates of apoptosis to be similar to controls.Conclusions: ADAM‐12 contributes to enhancing HB‐EGF shedding from plasma membranes leading to increased cell proliferation and reduced apoptosis in this bronchial epithelial cell line.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号