首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4152篇
  免费   433篇
  国内免费   517篇
  2024年   11篇
  2023年   56篇
  2022年   153篇
  2021年   277篇
  2020年   223篇
  2019年   260篇
  2018年   182篇
  2017年   153篇
  2016年   212篇
  2015年   323篇
  2014年   321篇
  2013年   347篇
  2012年   389篇
  2011年   361篇
  2010年   219篇
  2009年   197篇
  2008年   227篇
  2007年   159篇
  2006年   161篇
  2005年   131篇
  2004年   121篇
  2003年   102篇
  2002年   103篇
  2001年   81篇
  2000年   59篇
  1999年   45篇
  1998年   31篇
  1997年   26篇
  1996年   24篇
  1995年   20篇
  1994年   16篇
  1993年   15篇
  1992年   21篇
  1991年   11篇
  1990年   14篇
  1989年   10篇
  1988年   10篇
  1987年   5篇
  1986年   5篇
  1985年   5篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1974年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有5102条查询结果,搜索用时 15 毫秒
111.
Esophageal squamous cell carcinoma (ESCC) is the predominant esophageal cancer type in China. The aberrant activation of glioma-associated oncogene homolog1 (Gli1), a key factor in Hedgehog (Hh) signaling pathway, has been found in esophageal carcinoma. Moreover, Yes-associated protein 1 (YAP1), the major mediator of Hippo signaling pathway, has been linked to esophageal carcinoma progression. However, the precise roles and the underlying mechanism of both Gli1 and YAP1 in ESCC are unclear. Here, we found that Gli1 and YAP1 are overexpressed in ESCC and are associated with poor prognosis. In addition, we confirmed that knockdown of Gli1 or YAP1 suppresses ESCC cell growth, migration, and invasion in ESCC TE1 and EC109 cells. Significantly, Gli1 interacts with YAP1 in ESCC cells. Both Gli1 and YAP1 proteins are closely correlated with each other in human ESCC samples. Mechanistically, Gli1 upregulates YAP1 in a LATS1-independent manner. Conversely, YAP1 induces Gli1 by regulating phosphoinositide 3-kinase (PI3K)/AKT signaling pathway. Most importantly, we demonstrated that the interaction between Gli1 and YAP1 promotes ESCC tumor growth in vitro and in vivo. Our findings established a novel signaling mechanism by which the interaction between Gli1 and YAP1 promotes ESCC cell growth. This signaling regulation of the tumorigenesis provides a new therapeutic strategy for highly lethal ESCC.  相似文献   
112.
113.
Early weaning usually causes intestinal disorders, enteritis, and diarrhea in young animals and human infants. Astragalus polysaccharides (APS) possesses anti-inflammatory activity. To study the anti-inflammatory mechanisms of APS and its potential effects on intestinal health, we performed an RNA sequencing (RNA-seq) study in lipopolysaccharide (LPS)-stimulated porcine intestinal epithelial cells (IPEC-J2) in vitro. In addition, LPS-stimulated BALB/c mice were used to study the effects of APS on intestinal inflammation in vivo. The results from the RNA-seq analysis show that there were 107, 756, and 5 differentially expressed genes in the control versus LPS, LPS versus LPS+APS, and control versus LPS+APS comparison groups, respectively. The results of Kyoto Encyclopedia of Genes and Genomes enrichment analysis indicated that the mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways play significant roles in the regulation of inflammatory factors and chemokine expression by APS. Further verification of the above two pathways by using western blot and immunofluorescence analysis revealed that the gene expression levels of the phosphorylated p38 MAPK, ERK1/2, and NF-κB p65 were inhibited by APS, while the expression of IκB-α protein was significantly increased (p < .05), indicating that APS inhibits the production of inflammatory factors and chemokines by the inhibition of activation of the MAPK and NF-κB inflammatory pathways induced by LPS stimulation. Animal experiments further demonstrated that prefeeding APS in BALB/c mice can alleviate the expression of the jejunal inflammatory factors interleukin 6 (IL-6), IL-Iβ, and tumor necrosis factor-α induced by LPS stimulation and improve jejunal villus morphology.  相似文献   
114.
115.
116.
Tricho–rhino–phalangeal syndrome (TRPS) is a rare autosomal dominant disorder. Deletion or mutation of the TRPS1 gene leads to the tricho–rhino–phalangeal syndromes type I or type III. In this article, we describe a Chinese patient affected with type I TRPS and showing prominent pilar, rhinal and phalangeal abnormalities. Mutational screening and sequence analysis of TRPS1 gene revealed a previously unidentified four-base-pair deletion of nucleotides 1783–1786 (c.1783_1786delACTT). The mutation causes a frame shift after codon 593, introducing a premature stop codon after 637 residues in the gene sequence. This deletion is an unquestionable loss-of-function mutation, deleting all the functionally important parts of the protein. Our novel discovery indicates that sparse hair and metacarpal defects of tricho–rhino–phalangeal syndromes in this patient are due to this TRPS1 mutation. And this data further supports the critical role of TRPS1 gene in hair and partial skeleton morphogenesis.  相似文献   
117.
Xylanases are capable of decomposing xylans, the major components in plant cell wall, and releasing the constituent sugars for further applications. Because xylanase is widely used in various manufacturing processes, high specific activity, and thermostability are desirable. Here, the wild‐type and mutant (E146A and E251A) catalytic domain of xylanase from Thermoanaerobacterium saccharolyticum JW/SL‐YS485 (TsXylA) were expressed in Escherichia coli and purified subsequently. The recombinant protein showed optimal temperature and pH of 75°C and 6.5, respectively, and it remained fully active even after heat treatment at 75°C for 1 h. Furthermore, the crystal structures of apo‐form wild‐type TsXylA and the xylobiose‐, xylotriose‐, and xylotetraose‐bound E146A and E251A mutants were solved by X‐ray diffraction to high resolution (1.32–1.66 Å). The protein forms a classic (β/α)8 folding of typical GH10 xylanases. The ligands in substrate‐binding groove as well as the interactions between sugars and active‐site residues were clearly elucidated by analyzing the complex structures. According to the structural analyses, TsXylA utilizes a double displacement catalytic machinery to carry out the enzymatic reactions. In conclusion, TsXylA is effective under industrially favored conditions, and our findings provide fundamental knowledge which may contribute to further enhancement of the enzyme performance through molecular engineering. Proteins 2013; 81:1256–1265. © 2013 Wiley Periodicals, Inc.  相似文献   
118.
The objective of this study was to investigate the influence of solids retention time (SRT) on membrane fouling and the characteristics of biomacromolecules. Four identical laboratory-scale membrane bioreactors (MBRs) were operated with SRTs for 10, 20, 40 and 80 days. The results indicated that membrane fouling occurred faster and more readily under short SRTs. Fouling resistance was the primary source of filtration resistance. The modified fouling index (MFI) results suggested that the more ready fouling at short SRTs could be attributed to higher concentrations of soluble microbial products (SMP). Fourier transform infrared (FTIR) spectra indicated that the SRT had a weak influence on the functional groups of the total extracellular polymeric substances (TEPS) and SMP. However, the MBR under a short SRT had more low-molecular-weight (MW) compounds (<1 kDa) and fewer high-MW compounds (>100 kDa). Aromatic protein and tryptophan protein-like substances were the dominant groups in the TEPS and SMP, respectively.  相似文献   
119.
120.
Calcium is a crucial messenger in many growth and developmental processes in plants. The central mechanism governing how plant cells perceive and respond to environmental stimuli is calcium signal transduction, a process through which cellular calcium signals are recognized, decoded, and transmitted to elicit downstream responses. In the initial decoding of calcium signals, Ca2+ sensor proteins that bind Ca2+ and activate downstream signaling components are implicated, thereby regulating specific physiological and biochemical processes. After calcineurin B-like proteins (CBLs) sense these Ca2+ signatures, these proteins interact selectively with CBL-interacting protein kinases (CIPKs), thereby forming CBL/CIPK complexes, which are involved in decoding calcium signals. Therefore, specificity, diversity, and complexity are the main characteristics of the CBL-CIPK signaling system. However, additional CBLs, CIPKs, and CBL/CIPK complexes remain to be identified in plants, and the specific functions of their abiotic and biotic stress signaling will need to be further dissected. Therefore, a much-needed synthesis of recent findings is important to further the study of CBL-CIPK signaling systems. Here, we review the structure of CBLs and CIPKs, discuss the current knowledge of CBL–CIPK pathways that decode calcium signals in Arabidopsis, and link plant responses to a variety of environmental stresses with specific CBL/CIPK complexes. This will provide a foundation for future research on genetically engineered resistant plants with enhanced tolerance to various environmental stresses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号