首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9638篇
  免费   822篇
  国内免费   1176篇
  2024年   26篇
  2023年   151篇
  2022年   367篇
  2021年   577篇
  2020年   437篇
  2019年   524篇
  2018年   479篇
  2017年   295篇
  2016年   411篇
  2015年   637篇
  2014年   762篇
  2013年   757篇
  2012年   950篇
  2011年   864篇
  2010年   476篇
  2009年   474篇
  2008年   556篇
  2007年   450篇
  2006年   402篇
  2005年   333篇
  2004年   263篇
  2003年   217篇
  2002年   155篇
  2001年   128篇
  2000年   109篇
  1999年   145篇
  1998年   87篇
  1997年   99篇
  1996年   64篇
  1995年   59篇
  1994年   55篇
  1993年   46篇
  1992年   51篇
  1991年   42篇
  1990年   41篇
  1989年   30篇
  1988年   24篇
  1987年   19篇
  1986年   27篇
  1985年   21篇
  1984年   9篇
  1983年   10篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
121.
122.
To explore how alterations in the phosphodiesterase type 5 (PDE5) signalling pathway and oxidative stress correlate with changes in the expression of relaxation and contraction molecules and erectile dysfunction (ED) in the corpus cavernosum smooth muscle (CCSM) of spontaneously hypertensive rats (SHR). In this study, SHR and Wistar‐Kyoto (WKY) rats were used. Erectile function was determined by apomorphine test and electrical stimulation (ES) of cavernous nerve. Masson''s trichrome staining and confocal microscopy were performed. Nitric oxide synthase (NOS), PDE5, phosphorylated‐PDE5 and α1‐adrenergic receptor (α1AR) were determined by RT‐PCR and Western blotting while oxidative stress in CC was determined by colorimetric analysis. SHR exhibited obvious ED. CC of SHR showed less SM but more collagen fibres. The expression of NOS isoforms in SHR was significantly decreased while all α1AR isoforms were increased. In addition, PDE5 and phosphorylated‐PDE5 were down‐regulated and its activity attenuated in the hypertensive rats. Meanwhile, the SHR group suffered oxidative stress, which may be modulated by endoplasmic reticulum stress and NADPH oxidase up‐regulation. Dysregulation of NOS and α1AR, histological changes and oxidative stress in CC may be associated with the pathophysiology of hypertension‐induced ED. In addition, PDE5 down‐regulation may lead to the decreased efficacy of PDE5 inhibitors in some hypertensive ED patients and treatment of oxidative stress could be used as a new therapeutic target for this type of ED.  相似文献   
123.
Chronic pancreatitis (CP), characterized by pancreatic fibrosis, is a recurrent, progressive and irreversible disease. Activation of the pancreatic stellate cells (PSCs) is considered a core event in pancreatic fibrosis. In this study, we investigated the role of hydrogen peroxide‐inducible clone‐5 (Hic‐5) in CP. Analysis of the human pancreatic tissue samples revealed that Hic‐5 was overexpressed in patients with CP and was extremely low in healthy pancreas. Hic‐5 was significant up‐regulated in the activated primary PSCs independently from transforming growth factor beta stimulation. CP induced by cerulein injection was ameliorated in Hic‐5 knockout (KO) mice, as shown by staining of tissue level. Simultaneously, the activation ability of the primary PSCs from Hic‐5 KO mice was significantly attenuated. We also found that the Hic‐5 up‐regulation by cerulein activated the NF‐κB (p65)/IL‐6 signalling pathway and regulated the downstream extracellular matrix (ECM) genes such as α‐SMA and Col1a1. Therefore, we determined whether suppressing NF‐κB/p65 alleviated CP by treating mice with the NF‐κB/p65 inhibitor triptolide in the cerulein‐induced CP model and found that pancreatic fibrosis was alleviated by NF‐κB/p65 inhibition. These findings provide evidence for Hic‐5 as a therapeutic target that plays a crucial role in regulating PSCs activation and pancreatic fibrosis.  相似文献   
124.
Formononetin is a natural isoflavone compound found mainly in Chinese herbal medicines such as astragalus and red clover. It is considered to be a typical phytooestrogen. In our previous experiments, it was found that formononetin has a two‐way regulatory effect on endothelial cells (ECs): low concentrations promote the proliferation of ECs and high concentrations have an inhibitory effect. To find a specific mechanism of action and provide a better clinical effect, we performed a structural transformation of formononetin and selected better medicinal properties for formononetin modifier J1 and J2 from a variety of modified constructs. The MTT assay measured the effects of drugs on human umbilical vein endothelial cell (HUVEC) activity. Scratch and transwell experiments validated the effects of the drugs on HUVEC migration and invasion. An in vivo assessment effect of the drugs on ovariectomized rats. Long‐chain non‐coding RNA for EWSAT1, which is abnormally highly expressed in HUVEC, was screened by gene chip, and the effect of the drug on its expression was detected by PCR after the drug was applied. The downstream factors and their pathways were analysed, and the changes in the protein levels after drug treatment were evaluated by Western blot. In conclusion, the mechanism of action of formononetin, J1 and J2 on ECs may be through EWSAT1‐TRAF6 and its downstream pathways.  相似文献   
125.
Microtubule actin cross‐linking factor 1 (Macf1) is a spectraplakin family member known to regulate cytoskeletal dynamics, cell migration, neuronal growth and cell signal transduction. We previously demonstrated that knockdown of Macf1 inhibited the differentiation of MC3T3‐E1 cell line. However, whether Macf1 could regulate bone formation in vivo is unclear. To study the function and mechanism of Macf1 in bone formation and osteogenic differentiation, we established osteoblast‐specific Osterix (Osx) promoter‐driven Macf1 conditional knockout mice (Macf1f/fOsx‐Cre). The Macf1f/fOsx‐Cre mice displayed delayed ossification and decreased bone mass. Morphological and mechanical studies showed deteriorated trabecular microarchitecture and impaired biomechanical strength of femur in Macf1f/fOsx‐Cre mice. In addition, the differentiation of primary osteoblasts isolated from calvaria was inhibited in Macf1f/fOsx‐Cre mice. Deficiency of Macf1 in primary osteoblasts inhibited the expression of osteogenic marker genes (Col1, Runx2 and Alp) and the number of mineralized nodules. Furthermore, deficiency of Macf1 attenuated Bmp2/Smad/Runx2 signalling in primary osteoblasts of Macf1f/fOsx‐Cre mice. Together, these results indicated that Macf1 plays a significant role in bone formation and osteoblast differentiation by regulating Bmp2/Smad/Runx2 pathway, suggesting that Macf1 might be a therapeutic target for bone disease.  相似文献   
126.
Radiotherapy is one of the most important treatments for chest tumours. Although there are plenty of strategies to prevent damage to normal lung tissues, it cannot be avoided with the emergence of radiation‐induced lung injury. The purpose of this study was to investigate the potential radioprotective effects of glucosamine, which exerted anti‐inflammatory activity in joint inflammation. In this study, we found glucosamine relieved inflammatory response and structural damages in lung tissues after radiation via HE staining. Then, we detected the level of epithelial‐mesenchymal transition marker in vitro and in vivo, which we could clearly observe that glucosamine treatment inhibited epithelial‐mesenchymal transition. Besides, we found glucosamine could inhibit apoptosis and promote proliferation of normal lung epithelial cells in vitro caused by radiation. In conclusion, our data showed that glucosamine alleviated radiation‐induced lung injury via inhibiting epithelial‐mesenchymal transition, which indicated glucosamine could be a novel potential radioprotector for radiation‐induced lung injury.  相似文献   
127.
In order to find novel antitumor candidate agents with high efficiency and low toxicity, 14 novel substituted 5‐anilino‐α‐glucofuranose derivatives have been designed, synthesized and evaluated for antiproliferative activities in vitro. Their structures were characterized by NMR (1H and 13C) and HR‐MS, and configuration (R/S) at C(5) was identified by two‐dimensional 1H,1H‐NOESY‐NMR spectrum. Their antiproliferative activities against human tumor cells were investigated by MTT assay. The results demonstrated that most of the synthesized compounds had antiproliferative effects comparable to the reference drugs gefitinib and lapatinib. In particular, (5R)‐5‐O‐(3‐chloro‐4‐{[5‐(4‐fluorophenyl)thiophen‐2‐yl]methyl}anilino)‐5‐deoxy‐1,2‐O‐(1‐methylethylidene)‐α‐glucofuranose ( 9da ) showed the most potent antiproliferative effects against SW480, A431 and A549 cells, with IC50 values of 8.57, 5.15 and 15.24 μm , respectively. This work suggested 5‐anilino‐α‐glucofuranose as an antitumor core structure that may open a new way to develop more potent anti‐cancer agents.  相似文献   
128.
Constructing highly active electrocatalysts with superior stability at low cost is a must, and vital for the large‐scale application of rechargeable Zn–air batteries. Herein, a series of bifunctional composites with excellent electrochemical activity and durability based on platinum with the perovskite Sr(Co0.8Fe0.2)0.95P0.05O3?δ (SCFP) are synthesized via a facile but effective strategy. The optimal sample Pt‐SCFP/C‐12 exhibits outstanding bifunctional activity for the oxygen reduction reaction and oxygen evolution reaction with a potential difference of 0.73 V. Remarkably, the Zn–air battery based on this catalyst shows an initial discharge and charge potential of 1.25 and 2.02 V at 5 mA cm?2, accompanied by an excellent cycling stability. X‐ray photoelectron spectroscopy, X‐ray absorption near‐edge structure, and extended X‐ray absorption fine structure experiments demonstrate that the superior performance is due to the strong electronic interaction between Pt and SCFP that arises as a result of the rapid electron transfer via the Pt? O? Co bonds as well as the higher concentration of surface oxygen vacancies. Meanwhile, the spillover effect between Pt and SCFP also can increase more active sites via lowering energy barrier and change the rate‐determining step on the catalysts surface. Undoubtedly, this work provides an efficient approach for developing low‐cost and highly active catalysts for wider application of electrochemical energy devices.  相似文献   
129.
The interfacial instability between a thiophosphate solid electrolyte and oxide cathodes results in rapid capacity fade and has driven the need for cathode coatings. In this work, the stability, evolution, and performance of uncoated, Li2ZrO3‐coated, and Li3B11O18‐coated LiNi0.5Co0.2Mn0.3O2 cathodes are compared using first‐principles computations and electron microscopy characterization. Li3B11O18 is identified as a superior coating that exhibits excellent oxidation/chemical stability, leading to substantially improved performance over cells with Li2ZrO3‐coated or uncoated cathodes. The chemical and structural origin of the different performance is interpreted using different microscopy techniques which enable the direct observation of the phase decomposition of the Li2ZrO3 coating. It is observed that Li is already extracted from the Li2ZrO3 in the first charge, leading to the formation of ZrO2 nanocrystallites with loss of protection of the cathode. After 50 cycles separated (Co, Ni)‐sulfides and Mn‐sulfides can be observed within the Li2ZrO3‐coated material. This work illustrates the severity of the interfacial reactions between a thiophosphate electrolyte and oxide cathode and shows the importance of using coating materials that are absolutely stable at high voltage.  相似文献   
130.
The development of Pt‐free catalysts for the alkaline hydrogen evolution reaction (HER), which is widely used in industrial scale water‐alkali electrolyzers, remains a contemporary and pressing challenge. Ruthenium (Ru) has excellent water‐dissociation abilities and could be an alternative water splitting catalyst. However, its large hydrogen binding energy limits HER activity. Here, a new approach is proposed to boost the HER activity of Ru through uniform loading of Ru nanoparticles on triazine‐ring (C3N3)‐doped carbon (triNC). The composite (Ru/triNC) exhibits outstanding HER activity with an ultralow overpotential of ≈2 mV at 10 mA cm?2; thereby making it the best performing electrocatalyst hitherto reported for alkaline HER. The calculated metal mass activity of Ru/triNC is >10 and 15 times higher than that of Pt/C and Pt/triNC. Both theoretical and experimental studies reveal that the triazine‐ring is a good match for Ru to weaken the hydrogen binding on Ru through interfacial charge transfer via increased contact electrification. Therefore, Ru/triNC can provide the optimal hydrogen adsorption free energy (approaching zero), while maintaining the strong water‐dissociation activity. This study provides a new avenue for designing highly efficient and stable electrocatalysts for water splitting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号