首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10876篇
  免费   932篇
  国内免费   913篇
  12721篇
  2024年   33篇
  2023年   146篇
  2022年   283篇
  2021年   487篇
  2020年   357篇
  2019年   440篇
  2018年   504篇
  2017年   346篇
  2016年   497篇
  2015年   692篇
  2014年   826篇
  2013年   898篇
  2012年   1035篇
  2011年   907篇
  2010年   593篇
  2009年   417篇
  2008年   557篇
  2007年   458篇
  2006年   406篇
  2005年   375篇
  2004年   357篇
  2003年   361篇
  2002年   281篇
  2001年   182篇
  2000年   148篇
  1999年   172篇
  1998年   95篇
  1997年   68篇
  1996年   55篇
  1995年   68篇
  1994年   61篇
  1993年   42篇
  1992年   59篇
  1991年   51篇
  1990年   34篇
  1989年   32篇
  1988年   36篇
  1987年   19篇
  1986年   27篇
  1985年   23篇
  1984年   25篇
  1983年   15篇
  1982年   14篇
  1981年   14篇
  1979年   12篇
  1974年   12篇
  1973年   21篇
  1972年   12篇
  1966年   12篇
  1958年   13篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
31.
This study was performed to examine the use of NaOCl as an alternative antimicrobial compound in winemaking because of the potential health problems that may arise as a result of the use of SO2. For this, the blank (non-treated), control (SO2-added), and sample (NaOCl-treated) wines were made, and microbial and chemical changes including sensory characteristics were analyzed during the fermentation periods. Treatment of grapes with NaOCl decreased the initial contaminating microbial population in grape must, resulting in higher growth of yeast and lactic acid bacteria. After 200 days of fermentation, the chemical analysis of sample wine revealed that it had higher ethanol content, redness (a*), and concentrations of fruity ester compounds and lower total acidity than the control. In the sensory analyses, the sample wine obtained a higher overall acceptability score (5.70) than the control (4.26). This result reveals that NaOCl can be used as an alternative to SO2 in winemaking for inhibiting the growth of contaminating microorganisms.  相似文献   
32.
AMP-activated protein kinase (AMPK) plays a key role in modulating cellular metabolic processes. AMPK, a serine-threonine kinase, is a heterotrimeric complex of catalytic alpha-subunits and regulatory beta- and gamma-subunits with multiple isoforms. Mutations in the cardiac gamma(2)-isoform have been associated with hypertrophic cardiomyopathy and pre-excitation syndromes. However, physiological regulation of AMPK complexes containing different subunit isoforms is not well defined and is important for an understanding of the function of this signaling pathway in the intact heart. We evaluated the kinase activity associated with heart AMPK complexes containing specific alpha- and gamma-subunit isoforms of AMPK in an in vivo rat model of regional ischemia. Left coronary artery occlusion activated the immunoprecipitated alpha(1)-isoform (6-fold, P < 0.01) and alpha(2)-isoform (9-fold, P < 0.01) in the ischemic left ventricle compared with sham controls. The degree of alpha-subunit activation depended on the extent of ischemia and paralleled echocardiographic contractile dysfunction. The regulatory gamma(1)- and gamma(2)-isoforms were expressed in the heart. The gamma(1)- and gamma(2)-isoforms coimmunoprecipitated with alpha(1)- and alpha(2)-isoforms in proportion to alpha-subunit content. gamma(1)-Isoform immunocomplexes accounted for 70% of AMPK activity and AMPK phosphorylation (Thr(172)) in hearts. Ischemia similarly increased AMPK activity associated with the gamma(1)- and gamma(2)-isoform complexes threefold (P < 0.01 for each). Thus AMPK catalytic alpha(1)- and alpha(2)-isoforms are activated by regional ischemia in vivo in the heart, irrespective of the regulatory gamma(1)- or gamma(2)-isoforms to which they are complexed. Despite the pathophysiological importance of gamma(2)-isoform mutations, gamma(1)-isoform complexes account for most of the AMPK activity in the ischemic heart.  相似文献   
33.
34.
A family of serine proteases (SPs) mediates the proteolytic cascades of embryonic development and immune response in invertebrates. These proteases, called easter-type SPs, consist of clip and chymotrypsin-like SP domains. The SP domain of easter-type proteases differs from those of typical SPs in its primary structure. Herein, we report the first crystal structure of the SP domain of easter-type proteases, presented as that of prophenoloxidase activating factor (PPAF)-I in zymogen form. This structure reveals several important structural features including a bound calcium ion, an additional loop with a unique disulfide linkage, a canyon-like deep active site, and an exposed activation loop. We subsequently show the role of the bound calcium and the proteolytic susceptibility of the activation loop, which occurs in a clip domain-independent manner. Based on biochemical study in the presence of heparin, we suggest that PPAF-III, highly homologous to PPAF-I, contains a surface patch that is responsible for enhancing the catalytic activity through interaction with a nonsubstrate region of a target protein. These results provide insights into an activation mechanism of easter-type proteases in proteolytic cascades, in comparison with the well studied blood coagulation enzymes in mammals.  相似文献   
35.
Biosynthesis of flavonoid derivatives requires enzyme(s) having high reactivity as well as regioselectivity. We have synthesized 3-O-kaempferol from naringenin using two enzymes. The first reaction, in which naringenin is converted to kaempferol, is mediated by flavonol synthase (FLS). An FLS (PFLS) with strong catalytic activity was cloned and characterized from the genome sequence of the poplar (Populus deltoides). PFLS consists of a 1,008 bp ORF encoding a 38 kDa protein. PFLS was expressed in Escherichia coli with a glutathione-S-transferase (GST) tagging. The purified recombinant PFLS was characterized. Catalytically, it was more efficient than the previously characterized FLSs. A mixture of two E. coli transformants harboring either PFLS or ROMT9 (a kaempferol 3-O-methyltransferase) converted naringenin into 3-O-methylkaempferol.  相似文献   
36.
37.
38.
本文研究了分布在细叶益母草(Leonurussibiricus) 叶表面三种腺毛的发育过程,在此基础上,对2细胞头状腺毛、4细胞头状腺毛和8细胞盾状腺毛的多样性特征进行了讨论  相似文献   
39.
The incidence of lung cancer is increasing worldwide. Although great progress in lung cancer treatment has been made, the clinical outcome is still unsatisfactory. Tripartite motif (TRIM)-containing proteins has been shown to be closely related to tumor progression. However, the function of TRIM46 in lung cancer is largely unknown. Here, TRIM46 amplification was found in lung adenocarcinoma (LUAD) tissues and TRIM46 amplification was significantly associated with a poor survival rate. Overexpression of wild type TRIM46 increased the proliferation of LUAD cells and glycolysis, promoted xenografts growth, and enhanced cisplatin (DDP) resistance of LUAD cells via increased ubiquitination of pleckstrin homology domain leucine-rich repeat protein phosphatase 2 (PHLPP2) and upregulation of p-AKT. In contrast, overexpression of RING-mutant TRIM46 did not show any effects, suggesting the function of TRIM46 was dependent on the E3 ligase activity. Furthermore, we found that TRIM46 promoted LUAD cell proliferation and DDP resistance by enhancing glycolysis. PHLPP2 overexpression reversed the effects of TRIM46 overexpression. Amplification of TRIM46 also promoted LUAD growth and enhanced its DDP resistance in a patient-derived xenograft (PDX) model. In conclusion, our data highlight the importance of TRIM46/PHLPP2/AKT signaling in lung cancer and provide new insights into therapeutic strategies for lung cancer.Subject terms: Cancer, Biomarkers  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号