首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9975篇
  免费   708篇
  国内免费   856篇
  11539篇
  2024年   19篇
  2023年   139篇
  2022年   369篇
  2021年   638篇
  2020年   366篇
  2019年   482篇
  2018年   476篇
  2017年   327篇
  2016年   456篇
  2015年   704篇
  2014年   813篇
  2013年   798篇
  2012年   954篇
  2011年   871篇
  2010年   514篇
  2009年   465篇
  2008年   513篇
  2007年   422篇
  2006年   333篇
  2005年   271篇
  2004年   242篇
  2003年   249篇
  2002年   205篇
  2001年   150篇
  2000年   114篇
  1999年   132篇
  1998年   75篇
  1997年   72篇
  1996年   64篇
  1995年   51篇
  1994年   39篇
  1993年   26篇
  1992年   40篇
  1991年   22篇
  1990年   22篇
  1989年   38篇
  1988年   14篇
  1987年   8篇
  1986年   9篇
  1985年   21篇
  1984年   4篇
  1983年   8篇
  1982年   2篇
  1981年   2篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Agronomic traits, photosynthetic pigments, gas exchange, and chlorophyll (Chl) fluorescence parameters of red stem buckwheat (Fagopyrum dibotrys Hara) mutants induced by γ-radiation were compared with green control at seedling stage. Plant height, number of first-class branches, and rhizome biomass were inhibited significantly (p<0.01). Chl a, Chl b, and Chl a+b contents decreased with elevated dose of γ-rays, while increasing carotenoid content indicated that buckwheat was capable of adjusting to the radiation damage. Decrease in net photosynthetic rate was the result of both stomatal and non-stomatal limitations. Fluorescence parameters, such as F0, Fm, Fv/Fm, Fv/F0, ΦPS2, electron transport rate, and photochemical quenching declined significantly (p<0.01) as compared with control due to photoinhibition, while non-photochemical quenching increased to enhance thermal dissipation. Lower parameters implied that leaf tissue was damaged significantly by high dose of γ-radiation and therefore leaf senescence was accelerated.  相似文献   
992.
993.
The surface layer protein encoding genes from five mosquito-pathogenic Bacillus sphaericus isolates were amplified and sequenced. Negative staining of the S-layer protein extracted from the cell wall of wild-type B. sphaericus C3-41 was prepared. It showed a flat-sheet crystal lattice structure. Two genes encoding the entire and N-terminally truncated S-layer protein (slpC and DeltaslpC respectively), were ligated into plasmid pET28a and expressed in Escherichia coli. SDS-PAGE revealed that about 130 KD and 110 KD proteins could be expressed in the cytoplasm of recombinant E. coli BL21(pET28a/slpC) and E. coli BL21(pET28a/DeltaslpC) respectively. Furthermore, an intracellular sheet-like or fingerprint-shape structure was investigated in two recombinant strains, which expressed SlpC and DeltaSlpC protein respectively, by ultrathin microscopy study, but bioassay results suggested that the S-layer protein of wild B. sphaericus C3-41 and recombinant E. coli BL21 (pET28a/slpC) have no direct toxicity against mosquito larvae. These results should provide information for further understanding of the function of S-layer protein of pathogenic B. sphaericus.  相似文献   
994.
We aimed to investigate the relationship between the synthesis of hydrogen sulfide (H2S) and the pancreatic acinar cell apoptosis in severe acute pancreatitis (SAP) rats, as well as analyse the potential apoptotic pathway involved in this process. Sixty rats had been equally divided into four groups: sham, SAP, SAP + sodium hydrosulfide (NaHS) and SAP + DL-propargylglycine (PAG). 24 h after SAP induction, all surviving animals of each group were sacrificed to collect blood and tissue samples for the following measurements: the level of serum H2S as well as the levels of tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), H2S synthesizing activity, CSE mRNA and protein expression, maleic dialdehyde (MDA) and myeloperoxidase (MPO) activity, the expression of Bax, Bcl-2, caspase-3, -8 and -9, the release of cytochrome c and the activation of nuclear factor-kappa B (NF-κB), ERK1/2, JNK1/2 and p38 in pancreas. Furthermore, in situ detection of cell apoptosis was examined and the severity of pancreatic damage was analyzed by pathological grading and scoring. Results Significant differences in every index except IL-10 had been found between the SAP, NaHS and PAG groups (P < 0.05). Treatment with PAG obviously induced the pancreatic acinar cell apoptosis as well as improved all the pathological changes and inflammatory parameters. In contrast, administration of NaHS significantly attenuated apoptosis in the pancreas and aggravated the severity of pancreatic damage. Moreover, the expressions of caspase-3, -8, -9 and the release of cytochrome c were all increased in the apoptotic cells, and the activity of NF-κB as well as the phosphorylation of ERK1/2, JNK1/2 and p38 decreased accompanying with the reduction of the serum H2S level. H2S plays a pivotal role in the regulation of pancreatic acinar cell apoptosis in SAP rats. The present results showed that inhibition of H2S synthesis provided protection for SAP rats via inducing acinar cell apoptosis. This process acted through both extrinsic and intrinsic apoptotic pathways, and may be regulated by reducing the activity of NF-κB.  相似文献   
995.

Background

Single nucleotide polymorphisms (SNPs) from GCK, GCKR, G6PC2 and MTNR1B were found to modulate the fasting glucose levels. The current study aimed to replicate this association in the Chinese population and further analyze their effects on biphasic insulin secretion.

Methods/Principal Findings

SNPs from GCK, GCKR, G6PC2 and MTNR1B were genotyped in the Shanghai Chinese, including 3,410 type 2 diabetes patients and 3,412 controls. The controls were extensively phenotyped for the traits related to glucose metabolism and insulin secretion. We replicated the association between GCK rs1799884, G6PC2 rs16856187 and MTNR1B rs10830963 and fasting glucose in our samples (p = 0.0003∼2.0×10−8). GCK rs1799884 and G6PC2 rs16856187 showed association to HOMA-β, insulinogenic index and both first- and second-phases insulin secretion (p = 0.0030∼0.0396). MTNR1B rs10830963 was associated to HOMA-β, insulinogenic index and first-phase insulin secretion (p = 0.0102∼0.0426), but not second-phase insulin secretion (p = 0.9933). Combined effect analyses showed individuals carrying more risk allele for high fasting glucose tended to have a higher glucose levels at both fasting and 2 h during OGTTs (p = 1.7×10−13 and 0.0009, respectively), as well as lower HOMA-β, insulinogenic index and both first- and second-phases insulin secretion (p = 0.0321∼1.1×10−7).

Conclusions/Significance

We showed that SNPs from GCK, G6PC2 and MTNR1B modulated the fasting glucose levels in the normoglycaemic population while SNPs from G6PC2 and GCKR was associated with type 2 diabetes. Moreover, we found GCK and G6PC2 genetic variants were associated to both first- and second-phases insulin secretion while MTNR1B genetic variant was associated with first-phase insulin secretion, but not second-phase insulin secretion.  相似文献   
996.
Gold nanoparticles (GNPs) were modified with glutathione (GSH) to form GSH-capped GNPs, which have carboxyl groups on the surface of these nanoparticles. Then folic acid (FA) was conjugated with GNPs through the reaction between amino group of FA and carboxyl group of GSH. These folic acid-conjugated nanoparticles (FA-GSH-GNPs) were stable in aqueous solution over a broad range of pH and ionic strength values. The targeting of FA-GSH-GNPs in human cervices carcinoma cells (HeLa cells) with high-level folate receptor expression was confirmed by transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). No cellular uptake of these nanoparticles was observed in A549 cells lack of folate receptor. HeLa cells and mouse fibroblasts incubated with FA-GSH-GNPs were assayed by measuring the relative absorbance of the supernatant collected at low-speed centrifugation. Based on this simple spectroscopic method, HeLa cells have been detected with a detection limit of 102 cells/mL.  相似文献   
997.
The interferon-inducible transmembrane (IFITM) proteins inhibit a wide range of viruses. We previously reported the inhibition of human immunodeficiency virus type 1 (HIV-1) strain BH10 by human IFITM1, 2 and 3. It is unknown whether other HIV-1 strains are similarly inhibited by IFITMs and whether there exists viral countermeasure to overcome IFITM inhibition. We report here that the HIV-1 NL4-3 strain (HIV-1NL4-3) is not restricted by IFITM1 and its viral envelope glycoprotein is partly responsible for this insensitivity. However, HIV-1NL4-3 is profoundly inhibited by an IFITM1 mutant, known as Δ(117–125), which is deleted of 9 amino acids at the C-terminus. In contrast to the wild type IFITM1, which does not affect HIV-1 entry, the Δ(117–125) mutant diminishes HIV-1NL4-3 entry by 3-fold. This inhibition correlates with the predominant localization of Δ(117–125) to the plasma membrane where HIV-1 entry occurs. In spite of strong conservation of IFITM1 among most species, mouse IFITM1 is 19 amino acids shorter at its C-terminus as compared to human IFITM1 and, like the human IFITM1 mutant Δ(117–125), mouse IFITM1 also inhibits HIV-1 entry. This is the first report illustrating the role of viral envelope protein in overcoming IFITM1 restriction. The results also demonstrate the importance of the C-terminal region of IFITM1 in modulating the antiviral function through controlling protein subcellular localization.  相似文献   
998.
Polg mtDNA mutator mice are important models for investigating the role of acquired mtDNA mutations in aging. Despite extensive study, there remains little consensus on either the etiology of the progeroid phenotype or the mtDNA mutation spectrum induced by disrupted polymerase-γ function. To investigate the latter, we have developed a novel, pragmatic approach we term "Mito-seq," applying next-generation sequencing to enriched, native mtDNA. Regardless of detection parameters we observed an increase of at least two orders of magnitude in the number of mtDNA single nucleotide variants in Polg mutator mice compared to controls. We found no evidence for the accumulation of canonical mtDNA deletions but multimers of the mtDNA control region were identified in brain and heart. These control region multimers (CRMs) contained heterogeneous breakpoints and formed species that excluded the majority of mtDNA genes. CRMs demonstrate that polymerase-γ 3'-5' exonuclease activity is required for preserving mtDNA integrity.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号