首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147639篇
  免费   4840篇
  国内免费   5242篇
  157721篇
  2024年   142篇
  2023年   789篇
  2022年   1852篇
  2021年   3044篇
  2020年   2080篇
  2019年   2502篇
  2018年   13583篇
  2017年   11926篇
  2016年   9611篇
  2015年   4177篇
  2014年   4643篇
  2013年   4713篇
  2012年   9311篇
  2011年   17139篇
  2010年   14498篇
  2009年   10538篇
  2008年   12476篇
  2007年   13747篇
  2006年   2503篇
  2005年   2378篇
  2004年   2447篇
  2003年   2406篇
  2002年   1836篇
  2001年   1160篇
  2000年   1046篇
  1999年   833篇
  1998年   506篇
  1997年   475篇
  1996年   486篇
  1995年   422篇
  1994年   419篇
  1993年   354篇
  1992年   466篇
  1991年   361篇
  1990年   291篇
  1989年   267篇
  1988年   227篇
  1987年   207篇
  1986年   176篇
  1985年   154篇
  1984年   122篇
  1983年   139篇
  1982年   83篇
  1980年   52篇
  1979年   63篇
  1976年   46篇
  1974年   54篇
  1973年   45篇
  1972年   299篇
  1971年   300篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
苹果园中凹唇壁蜂和紫壁蜂的生态位比较研究   总被引:10,自引:0,他引:10  
杨龙龙  周伟儒 《昆虫学报》1997,40(3):265-270
本文对凹唇壁蜂Osmia excavata Alfken和紫壁蜂O.jacoti Cockerell的时间、空间、营养和筑巢生态位进行了研究。结果表明,在苹果园内人工释放和管理条件下,两种壁蜂在不同的资源序列上具有不同的生态位宽度、生态位重叠和不同程度的竞争关系。其中在营养上的竞争最为激烈,生态位重叠值和种间竞争系数分别高达0.9690和0.9994。日活动时间生态位竞争次之,其重叠值和种间竞争系数分别为0.7960和0.9350;时间生态位(季节)和空间生态位重叠值则分别为0.6500和0.6710,种间竞争系数为0.8213和0.8234;并且在人工巢管的选择上竞争性最小,生态位重叠值仅为0.4930,种间竞争系数为0.6052。凹唇壁蜂在营养生态位和时间生态位上较高的专一性均表现出其比紫壁蜂对苹果传粉作用更为显著。紫壁蜂在苹果开花后期的传粉作用较强。  相似文献   
992.
Oxidative stress promotes damage to cellular proteins, lipids, membranes and DNA, and plays a key role in the development of cancer. Reactive oxygen species disrupt redox homeostasis and promote tumor formation by initiating aberrant activation of signaling pathways that lead to tumorigenesis. We used shotgun proteomics to identify proteins containing oxidation-sensitive cysteines in tissue specimens from colorectal cancer patients. We then compared the patterns of cysteine oxidation in the membrane fractions between the tumor and non-tumor tissues. Using nano-UPLC-MSE proteomics, we identified 31 proteins containing 37 oxidation-sensitive cysteines. These proteins were observed with IAM-binding cysteines in non-tumoral region more than tumoral region of CRC patients. Then using the Ingenuity pathway program, we evaluated the cellular canonical networks connecting those proteins. Within the networks, proteins with multiple connections were related with organ morphology, cellular metabolism, and various disorders. We have thus identified networks of proteins whose redox status is altered by oxidative stress, perhaps leading to changes in cellular functionality that promotes tumorigenesis.  相似文献   
993.
Early germination of white oaks is widely viewed as an evolutionary strategy to escape rodent predation; yet, the mechanism by which this is accomplished is poorly understood. We report that chestnut oak Quercus montana (CO) and white oak Q. alba (WO) (from North America), and oriental cork oak Q. variabilis (OO) and Mongolian oak Q. mongolica (MO) (from Asia) can escape predation and successfully establish from only taproots. During germination in autumn, cotyledonary petioles of acorns of CO and WO elongate and push the plumule out of the cotyledons, whereas OO and MO extend only the hypocotyls and retain the plumule within the cotyledons. Experiments showed that the pruned taproots (>6 cm) of CO and WO acorns containing the plumule successfully germinated and survived, and the pruned taproots (≥12 cm) of OO and MO acorns without the plumule successfully regenerated along with the detached acorns, thus producing two seedlings. We argue that these two distinct regeneration morphologies reflect alternative strategies for escaping seed predation.  相似文献   
994.
Ning Liu  Ping Yang 《Luminescence》2013,28(4):542-550
Novel hybrid SiO2‐coated CdTe quantum dots (QDs) were created using CdTe QDs coated with a hybrid SiO2 shell containing Cd2+ ions and a sulfur source via a sol–gel process in aqueous solution. Aqueous CdTe QDs with tunable emitting color created through a reaction between cadmium chloride and sodium hydrogen telluride was used as cores for the preparation of hybrid SiO2‐coated CdTe QDs. In our experiments we found that the surface state of the cores and preparation conditions that affect the formation of the hybrid SiO2 shell also greatly affect photoluminescence of the hybrid SiO2‐coated CdTe QDs. The generation of CdS‐like clusters in the vicinity of the CdTe QDs, caused the quantum size effect of the QDs to be greatly reduced, which changes photoluminescence properties of the hybrid QDs fundamentally. Namely, the novel hybrid SiO2 shell played an important role in generating a series of specific optical properties. In addition, the novel hybrid SiO2 shell can be created if no CdTe QD is added. In order to gain an insight into the inter structure of the hybrid shell, we characterized the hybrid SiO2‐coated CdTe QDs using X‐ray diffraction analysis and discuss the formation mechanism of such a hybrid structure. This work is significant because the novel hybrid SiO2‐coated CdTe QDs with its excellent properties can be used in many applications, such as biolabeling and optoelectronic devices. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
995.
Recent experimental work involving Dictyostelium discoideum seems to contradict several theoretical models. Experiments suggest that localization of the release of the chemoattractant cyclic adenosine monophosphate to the uropod of the cell is important for stream formation during aggregation. Yet several mathematical models are able to reproduce streaming as the cells aggregate without taking into account localization of the chemoattractant. A careful analysis of the experiments and the theory suggests the two major features of the system which are important to stream formation are random cell motion and chemotaxis to regions of higher cell density. Random cell motion acts to reduce streaming, whereas chemotaxis to regions of higher cell density reinforces streaming. With this understanding, the experimental results can be explained in a manner consistent with the theoretical results. In all the experiments, alterations in the two main factors of random motion and chemotaxis to regions of higher cell density, not the localization of the release of the chemoattractant, can explain the results as they relate to streaming. Additionally, a comparison of results from a mathematical model that simulates cells which localize the chemoattractant and cells which do not shows little difference in the streaming patterns.  相似文献   
996.
Liu R  Liu H  Ma Y  Wu J  Yang H  Ye H  Lai R 《Journal of proteome research》2011,10(4):1806-1815
It is well-known that there is a large amount of antimicrobial peptides in amphibian skins but few antimicrobial peptides are found in amphibian brains. Twenty-two and four antimicrobial peptides were purified and characterized from the brain homogenate of Bombina maxima and B. microdeladigitora, respectively. One hundred fifty-eight cDNA clones encoding 79 antimicrobial peptides were isolated from brain cDNA libraries of B. maxima and B. microdeladigitora. These antimicrobial peptides belong to two peptide groups (maximin and maximin-H). Twenty of them are identical to previously reported antimicrobial peptides (maximin 1-8, 10, 11, maximin H1, 3-5, 7, 9, 10, 12, 15, 16) from B. maxima skin secretions. Fifty-nine of them are novel antimicrobial peptides. Some of these antimicrobial peptides showed strong antimicrobial activities against tested microorganism strains including Gram-positive and -negative bacteria and fungi. The current diversity in peptide coding cDNA sequences is, to our knowledge, the most extreme yet described for any animal brains. The extreme diversity may give rise to interest to prospect the actual functions of antimicrobial peptides in amphibian brains.  相似文献   
997.
The yeast Snf1, animal AMPK, and plant SnRK1 protein kinases constitute a family of related proteins that have been proposed to serve as metabolic sensors of the eukaryotic cell. We have previously reported the characterization of two redundant SnRK1 encoding genes (PpSNF1a and PpSNF1b) in the moss Physcomitrella patens. Phenotypic analysis of the snf1a snf1b double knockout mutant suggested that SnRK1 is important for the plant’s ability to recognize and adapt to conditions of limited energy supply, and also suggested a possible role of SnRK1 in the control of plant development. We have now used a yeast two-hybrid system to screen for PpSnf1a interacting proteins. Two new moss genes were found, PpSKI1 and PpSKI2, which encode highly similar proteins with homologues in vascular plants. Fusions of the two encoded proteins to the green fluorescent protein localize to the nucleus. Knockout mutants for either gene have an excess of gametophores under low light conditions, and exhibit reduced gametophore stem lengths. Possible functions of the new proteins and their connection to the SnRK1 kinase are discussed.  相似文献   
998.
A Gram-negative, non-motile, non-spore-forming, small, orange, rod-shaped bacterium was isolated from soil in South Korea and characterized to determine its taxonomic position. Phylogenetic analysis based on 16S rRNA gene sequence examination revealed that strain PB323T belongs to the family Sphingomonadaceae. The highest degree of sequence similarity was found with Sphingomonas kaistensis PB56T (98.9%), followed by Sphingomonas astaxanthinifaciens TDMA-17T (98.3%). Chemotaxonomic characteristics (the G+C content of the genomic DNA 69.0 mol%, Q-10 quinone system, C18:1 ω7c/ω9t/ω12t, C16:1 ω7c/C15:0 iso 2OH, C17:1 ω6c, and C16:0 as the major fatty acids) corroborated assignment of strain PB323T to the genus Sphingomonas. Results of physiological and biochemical tests clearly demonstrate that strain PB323T represents a distinct species and support its affiliation with the genus Sphingomonas. Based on these data, PB323T (=KCTC 12341T =JCM 16603T =KEMB 9004-003T) should be classified as a type strain of a novel species, for which the name Sphingomonas humi sp. nov. is proposed.  相似文献   
999.
造血干细胞是具有自我更新能力并能分化为血液中各种血细胞组分的多能干细胞。近来研究显示,不同造血干细胞表面标志物标记的造血干细胞具有分化为不同血细胞的趋势,但是这种分化的内在关系仍不清楚。对小鼠CD34~-/Sca-1~+骨髓造血干细胞、外周血组成随小鼠年龄增长的变化情况进行了分析,结果显示:随着年龄的增长,骨髓中的CD34~-/Sca-1~+骨髓造血干细胞比率显著增加;而外周血各组分则随年龄变化呈现不同的趋势。对不同年龄段小鼠的骨髓造血干细胞及其他组分与外周血组分的同步分析发现,外周血中血小板密度变化趋势与CD34~-/Sca-1~+骨髓造血干细胞变化情况相关系数为0.804 8;外周血中淋巴细胞密度变化趋势与CD34~+/Sca-1~-骨髓细胞的变化情况相关系数为0.947 97;外周血中白细胞密度变化趋势与CD34~+/Sca-1~+骨髓细胞变化情况相关系数为0.763 1(大于0.9为极度相关,0.7到0.9为高度相关)。  相似文献   
1000.
Drought is a major environmental stress that limits cotton (Gossypium hirsutum L.) production worldwide. TaMnSOD plays a crucial role as a peroxidation scavenger. In this study, TaMnSOD cDNA of Tamarix albiflonum was overexpressed in the cotton cultivar fy11 by Agrobacterium tumefaciens-mediated transformation. The transformed plants were assessed by gDNA PCR, RT-PCR and DNA gel blot analysis. The physiological and biochemical characters of two independent transgenic lines and control plants were tested and compared, and the morphological traits (biomass, root and lateral root length, leaf number) were also detected after recovery from water-withholding stress. When water was withheld from pot-grown 6-week-old seedlings for 18 days (watering to 8 % of field capacity), transgenic cotton plants accumulated more proline and soluble sugar than wild-type plants (WT). The activity of antioxidant enzymes such as superoxide dismutase and peroxidase was enhanced in transgenic plants under drought stress. Cell membrane integrity was also considerably improved under water stress, as indicated by reduced malondialdehyde content relative to control plants. Furthermore, net photosynthesis, stomatal conductance and transpiration rate were increased in transgenic plants compared with wild type. Transgenic cotton showed increases in biomass as well as root and leaf systems compared with WT after 2 weeks recovery from stress. These results suggest that TaMnSOD transgenic cotton plants acquired improved drought tolerance through enhanced development of the root and leaf system and the regulation of superoxide scavenging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号