首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3828篇
  免费   343篇
  国内免费   326篇
  2024年   4篇
  2023年   44篇
  2022年   102篇
  2021年   201篇
  2020年   131篇
  2019年   166篇
  2018年   157篇
  2017年   125篇
  2016年   185篇
  2015年   227篇
  2014年   256篇
  2013年   283篇
  2012年   321篇
  2011年   290篇
  2010年   188篇
  2009年   168篇
  2008年   206篇
  2007年   155篇
  2006年   168篇
  2005年   145篇
  2004年   138篇
  2003年   108篇
  2002年   115篇
  2001年   99篇
  2000年   86篇
  1999年   81篇
  1998年   49篇
  1997年   46篇
  1996年   38篇
  1995年   35篇
  1994年   28篇
  1993年   22篇
  1992年   19篇
  1991年   23篇
  1990年   11篇
  1989年   6篇
  1988年   10篇
  1987年   14篇
  1986年   8篇
  1985年   8篇
  1984年   8篇
  1983年   5篇
  1982年   4篇
  1981年   6篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有4497条查询结果,搜索用时 475 毫秒
111.
Invasive nonfunctional pituitary adenomas (NFPAs) are difficult to completely resect and often develop tumor recurrence after initial surgery. Currently, no medications are clinically effective in the control of NFPA. Although radiation therapy and radiosurgery are useful to prevent tumor regrowth, they are frequently withheld because of severe complications. Boron neutron capture therapy (BNCT) is a binary radiotherapy that selectively and maximally damages tumor cells without harming the surrounding normal tissue. Folate receptor (FR)-targeted boron-10 containing carbon nanoparticles is a novel boron delivery agent that can be selectively taken up by FR-expressing cells via FR-mediated endocytosis. In this study, FR-targeted boron-10 containing carbon nanoparticles were selectively taken up by NFPAs cells expressing FR but not other types of non-FR expressing pituitary adenomas. After incubation with boron-10 containing carbon nanoparticles and following irradiation with thermal neutrons, the cell viability of NFPAs was significantly decreased, while apoptotic cells were simultaneously increased. However, cells administered the same dose of FR-targeted boron-10 containing carbon nanoparticles without neutron irradiation or received the same neutron irradiation alone did not show significant decrease in cell viability or increase in apoptotic cells. The expression of Bcl-2 was down-regulated and the expression of Bax was up-regulated in NFPAs after treatment with FR-mediated BNCT. In conclusion, FR-targeted boron-10 containing carbon nanoparticles may be an ideal delivery system of boron to NFPAs cells for BNCT. Furthermore, our study also provides a novel insight into therapeutic strategies for invasive NFPA refractory to conventional therapy, while exploring these new applications of BNCT for tumors, especially benign tumors.  相似文献   
112.
113.

Aim

The aim was to investigate the association between human insulin and cancer incidence and mortality in Chinese patients with type 2 diabetes.

Methods

We recruited 8,774 insulin-naïve diabetes patients from the Shanghai Diabetes Registry (SDR). The follow-up rate was 85.4%. All subjects were divided into the insulin use cohort (n = 3,639) and the non-insulin use cohort (n = 5,135). The primary outcome was the first diagnosis of any cancer. The secondary outcome was all-cause mortality. Cox proportional hazards model was used to estimate the relative risk (RR) of cancer and mortality.

Results

We observed 98 cancer events in the insulin use cohort and 170 in the non-insulin use cohort. Cancer incidence rates were 78.6 and 74.3 per 10,000 patients per year in the insulin users and the non-insulin users, respectively. No significant difference in cancer risk was observed between the two cohorts (adjusted RR = 1.20, 95% CI 0.89–1.62, P = 0.228). Regarding site-specific cancers, only the risk of liver cancer was significantly higher in the insulin users compared to that in the non-insulin users (adjusted RR = 2.84, 95% CI 1.12–7.17, P = 0.028). The risks of overall mortality (adjusted RR = 1.89, 95% CI 1.47–2.43, P<0.0001) and death from cancer (adjusted RR = 2.16, 95% CI 1.39–3.35, P = 0.001) were all significantly higher in the insulin users than in the non-insulin users.

Conclusion

There was no excess risk of overall cancer in patients with type 2 diabetes who were treated with human insulin. However, a significantly higher risk of liver cancer was found in these patients. Moreover, insulin users showed higher risks of overall and cancer mortality. Considering that individuals treated with insulin were more likely to be advanced diabetic patients, caution should be used in interpreting these results.  相似文献   
114.
In this study, we prepared nano-hydroxyapatite/polyamide 66/glass fibre (n-HA/PA66/GF) bioactive bone screws. The microstructure, morphology and coating of the screws were characterised, and the adhesion, proliferation and viability of MC3T3-E1 cells on n-HA/PA66/GF scaffolds were determined using scanning electron microscope, CCK-8 assays and cellular immunofluorescence analysis. The results confirmed that n-HA/PA66/GF scaffolds were biocompatible and had no negative effect on MC3T3-E1 cells in vitro. To investigate the in vivo biocompatibility, internal fixation properties and osteogenesis of the bioactive screws, both n-HA/PA66/GF screws and metallic screws were used to repair intercondylar femur fractures in dogs. General photography, CT examination, micro-CT examination, histological staining and biomechanical assays were performed at 4, 8, 12 and 24 weeks after operation. The n-HA/PA66/GF screws exhibited good biocompatibility, high mechanical strength and extensive osteogenesis in the host bone. Moreover, 24 weeks after implantation, the maximum push-out load of the bioactive screws was greater than that of the metallic screws. As shown by their good cytocompatibility, excellent biomechanical strength and fast formation and ingrowth of new bone, n-HA/PA66/GF screws are thus suitable for orthopaedic clinical applications.  相似文献   
115.
Calcium phosphate (Ca-P) scaffolds have been widely employed as a supportive matrix and delivery system for bone tissue engineering. Previous studies using osteoinductive growth factors loaded Ca-P scaffolds via passive adsorption often experience issues associated with easy inactivation and uncontrolled release. In present study, a new delivery system was fabricated using bone morphogenetic protein-2 (BMP-2) loaded calcium-deficient hydroxyapatite (CDHA) scaffold by lyophilization with addition of trehalose. The in vitro osteogenesis effects of this formulation were compared with lyophilized BMP-2/CDHA construct without trehalose and absorbed BMP-2/CDHA constructs with or without trehalose. The release characteristics and alkaline phosphatase (ALP) activity analyses showed that addition of trehalose could sufficiently protect BMP-2 bioactivity during lyophilization and achieve sustained BMP-2 release from lyophilized CDHA construct in vitro and in vivo. However, absorbed BMP-2/CDHA constructs with or without trehalose showed similar BMP-2 bioactivity and presented a burst release. Quantitative real-time PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) demonstrated that lyophilized BMP-2/CDHA construct with trehalose (lyo-tre-BMP-2) promoted osteogenic differentiation of bone marrow stromal cells (bMSCs) significantly and this formulation could preserve over 70% protein bioactivity after 5 weeks storage at 25°C. Micro-computed tomography, histological and fluorescent labeling analyses further demonstrated that lyo-tre-BMP-2 formulation combined with bMSCs led to the most percentage of new bone volume (38.79% ±5.32%) and area (40.71% ±7.14%) as well as the most percentage of fluorochrome stained bone area (alizarin red S: 2.64% ±0.44%, calcein: 6.08% ±1.37%) and mineral apposition rate (4.13±0.62 µm/day) in critical-sized rat cranial defects healing. Biomechanical tests also indicated the maximum stiffness (118.17±15.02 Mpa) and load of fracture (144.67±16.13 N). These results lay a potential framework for future study by using trehalose to preserve growth factor bioactivity and optimize release profile of Ca-P based delivery system for enhanced bone regeneration.  相似文献   
116.
One approach to deliver therapeutic agents, especially proteins, to the gastro-intestinal (GI) tract is to use commensal bacteria as a carrier. Genus Lactobacillus is an attractive candidate for use in this approach. However, a system for expressing exogenous proteins at a high level has been lacking in Lactobacillus. Moreover, it will be necessary to introduce the recombinant Lactobacillus into the GI tract, ideally by oral administration. Whether orally administered Lactobacillus can reach and reside in the GI tract has not been explored in neonates. In this study, we have examined these issues in neonatal rats. To achieve a high level of protein expression in Lactobacillus, we tested the impact of three promoters and two backbones on protein expression levels using mRFP1, a red fluorescent protein, as a reporter. We found that a combination of an L-lactate dehydrogenase (ldhL) promoter of Lactobacillus sakei with a backbone from pLEM415 yielded the highest level of reporter expression. When this construct was used to transform Lactobacillus casei, Lactobacillus delbrueckii and Lactobacillus acidophilus, high levels of mRFP1 were detected in all these species and colonies of transformed Lactobacillus appeared pink under visible light. To test whether orally administered Lactobacillus can be retained in the GI tract of neonates, we fed the recombinant Lactobacillus casei to neonatal rats. We found that about 3% of the bacteria were retained in the GI tract of the rats at 24 h after oral feeding with more recombinant Lactobacillus in the stomach and small intestine than in the cecum and colon. No mortality was observed throughout this study with Lactobacillus. In contrast, all neonatal rats died within 24 hours after fed with transformed E. coli. Taken together, our results indicate that Lactobacillus has the potential to be used as a vehicle for the delivery of therapeutic agents to neonates.  相似文献   
117.

Background

Human activity has a profound effect on the global environment and caused frequent occurrence of climatic fluctuations. To survive, plants need to adapt to the changing environmental conditions through altering their morphological and physiological traits. One known mechanism for phenotypic innovation to be achieved is environment-induced rapid yet inheritable epigenetic changes. Therefore, the use of molecular techniques to address the epigenetic mechanisms underpinning stress adaptation in plants is an important and challenging topic in biological research. In this study, we investigated the impact of warming, nitrogen (N) addition, and warming+nitrogen (N) addition stresses on the cytosine methylation status of Leymus chinensis Tzvel. at the population level by using the amplified fragment length polymorphism (AFLP), methylation-sensitive amplified polymorphism (MSAP) and retrotransposon based sequence-specific amplification polymorphism (SSAP) techniques.

Methodology/Principal Findings

Our results showed that, although the percentages of cytosine methylation changes in SSAP are significantly higher than those in MSAP, all the treatment groups showed similar alteration patterns of hypermethylation and hypomethylation. It meant that the abiotic stresses have induced the alterations in cytosine methylation patterns, and the levels of cytosine methylation changes around the transposable element are higher than the other genomic regions. In addition, the identification and analysis of differentially methylated loci (DML) indicated that the abiotic stresses have also caused targeted methylation changes at specific loci and these DML might have contributed to the capability of plants in adaptation to the abiotic stresses.

Conclusions/Significance

Our results demonstrated that abiotic stresses related to global warming and nitrogen deposition readily evoke alterations of cytosine methylation, and which may provide a molecular basis for rapid adaptation by the affected plant populations to the changed environments.  相似文献   
118.
Midkine (MDK) is a heparin-binding growth factor that is highly expressed in many malignant tumors, including lung cancers. MDK activates the PI3K pathway and induces anti-apoptotic activity, in turn enhancing the survival of tumors. Therefore, the inhibition of MDK is considered a potential strategy for cancer therapy. In the present study, we demonstrate a novel small molecule compound (iMDK) that targets MDK. iMDK inhibited the cell growth of MDK-positive H441 lung adenocarcinoma cells that harbor an oncogenic KRAS mutation and H520 squamous cell lung cancer cells, both of which are types of untreatable lung cancer. However, iMDK did not reduce the cell viability of MDK-negative A549 lung adenocarcinoma cells or normal human lung fibroblast (NHLF) cells indicating its specificity. iMDK suppressed the endogenous expression of MDK but not that of other growth factors such as PTN or VEGF. iMDK suppressed the growth of H441 cells by inhibiting the PI3K pathway and inducing apoptosis. Systemic administration of iMDK significantly inhibited tumor growth in a xenograft mouse model in vivo. Inhibition of MDK with iMDK provides a potential therapeutic approach for the treatment of lung cancers that are driven by MDK.  相似文献   
119.
[目的]甘肃马先蒿与感染内生真菌的禾草(紫花针茅和麦宾草)建立根寄生关系,有关内生真菌对根寄生危害禾草光合作用调控方面的研究较少。[方法]本研究以紫花针茅和麦宾草带菌(E+)、不带菌(E-)植株为研究对象,研究甘肃马先蒿寄生和未寄生处理对紫花针茅和麦宾草E+、E-植株不同生长阶段光合特性影响的动态变化。[结果]甘肃马先蒿寄生显著降低紫花针茅和麦宾草的净光合速率、蒸腾速率和气孔导度,而胞间二氧化碳浓度和水分利用率却显著增加,这与禾草是否感染内生真菌无关。甘肃马先蒿寄生后E+紫花针茅的净光合速率、气孔导度和蒸腾速率高于E-植株,而麦宾草E+植株的净光合速率、气孔导度和蒸腾速率却低于E-植株;同时,根寄生条件下E+紫花针茅的胞间二氧化碳浓度和水分利用率低于E-植株;而E-麦宾草植株的胞间二氧化碳浓度和水分利用率却低于E+植株。[结论]内生真菌侵染影响甘肃马先蒿根寄生危害禾草的光合作用;甘肃马先蒿和内生真菌同时成为禾草营养消耗库时,内生真菌与禾草的共生关系处于一种互惠共生和相互拮抗的动态变化。  相似文献   
120.
The optical response of lanthanum hexaboride (LaB6) nanoparticles has been investigated by both theoretically and experimentally. The LaB6 nanoparticles obtained by solid-state reaction could avoid serious surface oxidization and exhibit excellent optical performance. The discrete dipole approximation (DDA) has been used to investigate the optical response of LaB6 nanoparticles with different sizes and different shapes. The calculation results coincide with the experimental results and reveal that the largest extinction peak value appears at 60 nm for cubic particles and 40 nm for spherical particles, respectively. Our calculation results show that the existence of the largest extinction peak value is not only due to the surface oxides but also relate to the particle shape of LaB6 compound. In addition, the LaB6 nanoparticles with cubic and spherical shapes exhibit different optical responses, and the cubic particles exhibit stronger near infrared (NIR) extinction than spherical particles. With increasing particle size, the extinction peak value of spherical particle decreases more rapidly than that of cubic ones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号