首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3793篇
  免费   340篇
  国内免费   325篇
  4458篇
  2024年   7篇
  2023年   45篇
  2022年   110篇
  2021年   201篇
  2020年   131篇
  2019年   165篇
  2018年   155篇
  2017年   123篇
  2016年   184篇
  2015年   224篇
  2014年   248篇
  2013年   280篇
  2012年   319篇
  2011年   289篇
  2010年   185篇
  2009年   165篇
  2008年   205篇
  2007年   154篇
  2006年   167篇
  2005年   145篇
  2004年   136篇
  2003年   107篇
  2002年   115篇
  2001年   97篇
  2000年   85篇
  1999年   79篇
  1998年   46篇
  1997年   44篇
  1996年   38篇
  1995年   34篇
  1994年   28篇
  1993年   21篇
  1992年   19篇
  1991年   23篇
  1990年   11篇
  1989年   6篇
  1988年   10篇
  1987年   14篇
  1986年   8篇
  1985年   8篇
  1984年   8篇
  1983年   4篇
  1982年   2篇
  1981年   5篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有4458条查询结果,搜索用时 0 毫秒
1.
The CD genome species in the genus Oryza are endemic to Latin America, including O. alta, O. grandiglumis and O. latifolia. Origins and phylogenetic relationship of these species have long been in dispute and are still ambiguous due to their homogeneous genome type, similar morphological characteristics and overlapping distribution. In the present study, we sequenced two chloroplast fragments (matK and trnL-trnF) and portions of three nuclear genes (Adh1, Adh2 and GPA1) from sixteen accessions representing seven species with the C, CD, and E genomes, as well as one G genome species as the outgroup. Phylogenetic analyses using parsimony and distance methods strongly supported that the CD genome originated from a single hybridization event, and that the C genome species (O. officinalis or O. rhizomatis instead of O. eichingeri) served as the maternal parent while the E genome species (O. australiensis) was the paternal donor during the formation of CD genome. In addition, the consistent phylogenetic relationships among the CCDD species indicated that significant divergence existed between O. latifolia and the other two (O. alta and O. grandiglumis), which corroborated the suggestion of treating the latter two as a single species or as taxa within species.We thank Tao Sang of Michigan State University (East Lansing, USA) and Bao-rong Lu of Fudan University (Shanghai, China) for their encouragement and assistance. We are also grateful to the International Rice Research Institute (Manila, Philippines) for providing plant material for this study. This research was supported by the Chinese Academy of Sciences (kscxz-sw-101A), the National Natural Science Foundation of China (30025005) and the Program for Key International S & T Cooperation Project of P. R. China (2001CB711103).  相似文献   
2.
零下低温对杂交杨树皮层膜脂组成的影响   总被引:3,自引:0,他引:3  
以不耐寒的美洲黑杨(Populusdeltoidescv.“Lux”I-69/55,父本)和耐寒性较强的欧美杨(P.euramericanaclcv.I-45/51,母本)的4个杂交F_1代无性系(95杨、559杨、600杨和1381杨)为材料,分析了零下低温寒潮前后枝条皮层的脂质组成。结果表明,寒潮影响下,皮层中磷脂含量增加而组成基本不变,膜脂脂肪酸组成的变化规律是:寒潮前脂肪酸不饱和指数(IUFA)值大的无性系,寒潮前后的IUFA值变化量小;寒潮前IUFA值较小的无性系,寒潮前后IUFA值变化量较大。本文借用力学概念,提出相对抗性概念,给出杨树无性系的相对抗性序列。序列表明F_1代无性系的耐寒性已较不耐寒的父本提高,这与田间观察基本一致。  相似文献   
3.
黄精凝集素Ⅱ分子稳定性与生物学活性研究鲍锦库,曾仲奎,周红(四川大学生物系,成都,610064)本文在黄精凝集素Ⅱ纯化及性质研究的基础上,应用多种变性条件,研究其分子特性,同时对分子的巯基和色氨酸进行修饰,研究该凝集素分子保持其生物学活性与这些基团的...  相似文献   
4.
Nitric oxide (NO) is a key player in numerous physiological processes. Excessive NO induces DNA damage, but how plants respond to this damage remains unclear. We screened and identified an Arabidopsis NO hypersensitive mutant and found it to be allelic to TEBICHI/POLQ, encoding DNA polymerase θ. The teb mutant plants were preferentially sensitive to NO- and its derivative peroxynitrite-induced DNA damage and subsequent double-strand breaks (DSBs). Inactivation of TEB caused the accumulation of spontaneous DSBs largely attributed to endogenous NO and was synergistic to DSB repair pathway mutations with respect to growth. These effects were manifested in the presence of NO-inducing agents and relieved by NO scavengers. NO induced G2/M cell cycle arrest in the teb mutant, indicative of stalled replication forks. Genetic analyses indicate that Polθ is required for translesion DNA synthesis across NO-induced lesions, but not oxidation-induced lesions. Whole-genome sequencing revealed that Polθ bypasses NO-induced base adducts in an error-free manner and generates mutations characteristic of Polθ-mediated end joining. Our experimental data collectively suggests that Polθ plays dual roles in protecting plants from NO-induced DNA damage. Since Polθ is conserved in higher eukaryotes, mammalian Polθ may also be required for balancing NO physiological signaling and genotoxicity.  相似文献   
5.
Indigenous Fe- and S-metabolizing bacteria play important roles both in the formation and the natural attenuation of acid mine drainage (AMD). Due to its low pH and Fe-S-rich waters, a river located in the Dabaoshan Mine area provides an ideal opportunity to study indigenous Fe- and S-metabolizing microbial communities and their roles in biogeochemical Fe and S cycling. In this work, water and sediment samples were collected from the river for physicochemical, mineralogical, and microbiological analyses. Illumina MiSeq sequencing indicated higher species richness in the sediment than in the water. Sequencing also found that Fe- and S-metabolizing bacteria were the dominant microorganisms in the heavily and moderately contaminated areas. Fe- and S-metabolizing bacteria found in the water were aerobes or facultative anaerobes, including Acidithiobacillus, Acidiphilium, Thiomonas, Gallionella, and Leptospirillum. Fe- and S-metabolizing bacteria found in the sediment belong to microaerobes, facultative anaerobes, or obligatory anaerobes, including Acidithiobacillus, Sulfobacillus, Thiomonas, Gallionella, Geobacter, Geothrix, and Clostridium. Among the dominant genera in the sediment, Geobacter and Geothrix were rarely detected in AMD-contaminated natural environments. Canonical correspondence analysis indicated that pH, S, and Fe concentration gradients were the most important factors in structuring the river microbial community. Moreover, a scheme explaining the biogeochemical Fe and S cycling is advanced in light of the Fe and S species distribution and the identified Fe- and S-metabolizing bacteria.  相似文献   
6.
The whole length SPV2 gene of 715 bp, encoding VAMP-2 protein of 110 amino acids from Japanese sea perch, Lateolabrax japonicus, was obtained by using both RT-PCR and anchored PCR strategies while we initiated the structural and functional study on SNARE proteins in marine teleostean. Analysis of the deduced amino acid sequence indicated that SPV2 has its core arginine residue, a potential N-linked glycosylation site near its N-terminal, and one transmembrane domain in its C-terminal. Advanced structural analysis of bioinformatics approach predicts a coiled-coil α-helix backbone as the characteristic of SPV2 main conformational structure, identical to the structure of rat VAMP-2 obtained by crystallography. Semi-quantitative RT-PCR revealed that SPV2 was generally expressed in 10 neural and non-neural tissues, with the highest concentration in brain and the least in muscle.  相似文献   
7.
ABSTRACT: BACKGROUND: Etoposide (epipodophyllotoxin) is a chemical commonly used as an anti-cancer drug which inhibits DNA synthesis by blocking topoisomerase II activity. Previous studies in animal cells have demonstrated that etoposide constitutes a genotoxic stress which may induce genomic instability including mobilization of normally quiescent transposable elements (TEs). However, it remained unknown whether similar genetically mutagenic effects could be imposed by etoposide in plant cells. Also, no information is available with regard to whether the drug may cause a perturbation of epigenetic stability in any organism. RESULTS: To investigate whether etoposide could generate genetic and/or epigenetic instability in plant cells, we applied etoposide to germinating seeds of six cultivated rice (Oryza sativa L.) genotypes including both subspecies, japonica and indica. Based on the methylation-sensitive gel-blotting results, epigenetic changes in DNA methylation of three TEs (Tos17, Osr23 and Osr36) and two protein-encoding genes (Homeobox and CDPK-related genes) were detected in the etoposide-treated plants (S0 generation) in four of the six studied japonica cultivars, Nipponbare, RZ1, RZ2, and RZ35, but not in the rest japonica cultivar (Matsumae) and the indica cultivar (93-11). DNA methylation changes in the etoposide-treated S0 rice plants were validated by bisulfite sequencing at both of two analyzed loci (Tos17 and Osr36). Transpositional activity was tested for eight TEs endogenous to the rice genome in both the S0 plants and their selfed progenies (S1 and S2) of one of the cultivars, RZ1, which manifested heritable phenotypic variations. Results indicated that no transposition occurred in the etoposide-treated S0 plants for any of the TEs. Nonetheless, a MITE transposon, mPing, showed rampant mobilization in the S1 and S2 progenies descended from the drug-treated S0 plants. CONCLUSIONS: Our results demonstrate that etoposide imposes a similar genotoxic stress on plant cells as it does on animal and human cells, which may induce transgenerational genomic instability by instigating transpositional activation of otherwise dormant TEs. In addition, we show for the first time that etoposide may induce epigenetic instability in the form of altered DNA methylation patterns in eukaryotes. However, penetration of the genotoxic effects of etoposide on plant cells, as being reflected as genetic and epigenetic instability, appears to be in a strictly genotype- and/or generation-dependent manner.  相似文献   
8.
9.
The most remarkable developmental event during metamorphosis in flatfish (Pleuronectiformes) is the migration of their eyes; one eye migrates upwards, then passes through the dorsal midline, and finally stops on the other side. In this study, we determined that the ratio of the movable eye diameter on the transverse axis (DTA) to that on the vertical axis (DVA) increased during the metamorphosis of Paralichthys olivaceus and Solea senegalensis. Based on the recently proposed hypothesis that eye migration of flatfishes is caused by the push force from the proliferated tissue of the suborbital region, we postulated that the eye shape change is a result of the same force. Measurements of eye proportions in 20 species of adult flatfishes revealed that the DTA is constantly larger than the DVA, suggesting that the mechanisms of eye shape change and eye migration driven by proliferating cells in the suborbital tissue are universal among flatfishes.  相似文献   
10.
We are developing a new recombineering system to assist experimental manipulation of the Pseudomonas syringae genome. P. syringae is a globally dispersed plant pathogen and an important model species used to study the molecular biology of bacteria-plant interactions. We previously identified orthologs of the lambda Red bet/exo and Rac recET genes in P. syringae and confirmed that they function in recombineering using ssDNA and dsDNA substrates. Here we investigate the properties of dsDNA substrates more closely to determine how they influence recombineering efficiency. We find that the length of flanking homologies and length of the sequences being inserted or deleted have a large effect on RecTEPsy mediated recombination efficiency. These results provide information about the design elements that should be considered when using recombineering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号