首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   297篇
  免费   14篇
  2024年   1篇
  2023年   3篇
  2022年   4篇
  2021年   6篇
  2020年   6篇
  2019年   3篇
  2018年   10篇
  2017年   5篇
  2016年   6篇
  2015年   26篇
  2014年   19篇
  2013年   21篇
  2012年   30篇
  2011年   29篇
  2010年   22篇
  2009年   11篇
  2008年   14篇
  2007年   21篇
  2006年   19篇
  2005年   9篇
  2004年   4篇
  2003年   7篇
  2002年   9篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1988年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
  1934年   1篇
排序方式: 共有311条查询结果,搜索用时 265 毫秒
41.
Development of versatile and flexible assembly systems for fabrication of functional hybrid nanomaterials with well-defined hierarchical and spatial organization is of a significant importance in practical nanobiotechnology applications. Here we demonstrate a bio-enabled self-assembly technique for fabrication of multi-layered protein and nanometallic assemblies utilizing a modular gold-binding (AuBP1) fusion tag. To accomplish the bottom-up assembly we first genetically fused the AuBP1 peptide sequence to the C'-terminus of maltose-binding protein (MBP) using two different linkers to produce MBP-AuBP1 hetero-functional constructs. Using various spectroscopic techniques, surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR), we verified the exceptional binding and self-assembly characteristics of AuBP1 peptide. The AuBP1 peptide tag can direct the organization of recombinant MBP protein on various gold surfaces through an efficient control of the organic-inorganic interface at the molecular level. Furthermore using a combination of soft-lithography, self-assembly techniques and advanced AuBP1 peptide tag technology, we produced spatially and hierarchically controlled protein multi-layered assemblies on gold nanoparticle arrays with high molecular packing density and pattering efficiency in simple, reproducible steps. This model system offers layer-by-layer assembly capability based on specific AuBP1 peptide tag and constitutes novel biological routes for biofabrication of various protein arrays, plasmon-active nanometallic assemblies and devices with controlled organization, packing density and architecture.  相似文献   
42.
43.
Pattern formation in developing tissues involves dynamic spatio-temporal changes in cellular organization and subsequent evolution of functional adult structures. Branching morphogenesis is a developmental mechanism by which patterns are generated in many developing organs, which is controlled by underlying molecular pathways. Understanding the relationship between molecular signaling, cellular behavior and resulting morphological change requires quantification and categorization of the cellular behavior. In this study, tissue-level and cellular changes in developing salivary gland in response to disruption of ROCK-mediated signaling by are modeled by building cell-graphs to compute mathematical features capturing structural properties at multiple scales. These features were used to generate multiscale cell-graph signatures of untreated and ROCK signaling disrupted salivary gland organ explants. From confocal images of mouse submandibular salivary gland organ explants in which epithelial and mesenchymal nuclei were marked, a multiscale feature set capturing global structural properties, local structural properties, spectral, and morphological properties of the tissues was derived. Six feature selection algorithms and multiway modeling of the data was performed to identify distinct subsets of cell graph features that can uniquely classify and differentiate between different cell populations. Multiscale cell-graph analysis was most effective in classification of the tissue state. Cellular and tissue organization, as defined by a multiscale subset of cell-graph features, are both quantitatively distinct in epithelial and mesenchymal cell types both in the presence and absence of ROCK inhibitors. Whereas tensor analysis demonstrate that epithelial tissue was affected the most by inhibition of ROCK signaling, significant multiscale changes in mesenchymal tissue organization were identified with this analysis that were not identified in previous biological studies. We here show how to define and calculate a multiscale feature set as an effective computational approach to identify and quantify changes at multiple biological scales and to distinguish between different states in developing tissues.  相似文献   
44.
Tenascin-R (TN-R), a member of the tenascin family of extracellular matrix glycoproteins, is exclusive to the nervous system. It affects cell migration, adhesion and differentiation, although no remarkable clinical consequences have been shown in knock-out animal models. TN-R's expression pattern suggests a possible primary or secondary role in certain neurological problems including malformations, tumors and neurodegenerative disorders. This review summarizes the structure and molecular interactions of this molecule and discusses its function and possible roles in the central nervous system.  相似文献   
45.
Lectins are carbohydrate-binding proteins present in a wide variety of plants and animals, which serve various important physiological functions. A soluble β-galactoside binding lectin has been isolated and purified to homogeneity from buffalo brain using ammonium sulphate precipitation (40–70%) and gel permeation chromatography on Sephadex G50–80 column. The molecular weight of buffalo brain lectin (BBL) as determined by SDS-PAGE under reducing and non-reducing conditions was 14.2 kDa, however, with gel filtration it was 28.5 kDa, revealing the dimeric form of protein. The neutral sugar content of the soluble lectin was estimated to be 3.3%. The BBL showed highest affinity for lactose and other sugar moieties in glycosidic form, suggesting it to be a β-galactoside binding lectin. The association constant for lactose binding as evidenced by Scatchard analysis was 6.6 × 103 M−1 showing two carbohydrate binding sites per lectin molecule. A total inhibition of lectin activity was observed by denaturants like guanidine HCl, thiourea and urea at 6 M concentration. The treatment of BBL with oxidizing agent destroyed its agglutination activity, abolished its fluorescence, and shifted its UV absorption maxima from 282 to 250 nm. The effect of H2O2 was greatly prevented by lactose indicating that BBL is more stable in the presence of its specific ligand. The purified lectin was investigated for its brain cell aggregation properties by testing its ability to agglutinate cells isolated from buffalo and goat brains. Rate of aggregation of buffalo brain cells by purified protein was more than the goat brain cells. The data from above study suggests that the isolated lectin may belong to the galectin-1 family but is glycosylated unlike those purified till date.  相似文献   
46.
Apigenin, a dietary plant derived flavone subclass of flavonoid is expected to play a role in cancer chemoprevention and cancer chemotherapy. Here we designed our experiment to establish whether treatment of apigenin (25 mg/kg body weight) for 14 consecutive days to (N-nitrosodiethylamine) DEN induced (200 mg/kg body weight; by single ip. injection) and phenobarbital promoted (0.05% through drinking water for 14 successive weeks) rats provide protection against the oxidative stress caused by the carcinogen. The level of lipid peroxidation (LPO) markedly increased in carcinogen administered animals, which was brought back to near normal by apigenin treatment. In contrast the activities/levels of the antioxidant status both in liver and kidney were decreased in carcinogen administered animals, which was recouped back to near normal upon apigenin administration. From our findings we concluded that apigenin prevents LPO and protects antioxidant system in DEN induced and phenobarbital promoted hepatocellular carcinogenesis.  相似文献   
47.
Skin bacteria at peripheral intravenous catheter (PIVC) insertion sites pose a serious risk of microbial migration and subsequent colonisation of PIVCs, and the development of catheter related bloodstream infections (CRBSIs). Common skin bacteria are often associated with CRBSIs, therefore the bacterial communities at PIVC skin sites are likely to have major implications for PIVC colonisation. This study aimed to determine the bacterial community structures on skin at PIVC insertion sites and to compare the diversity with associated PIVCs. A total of 10 PIVC skin site swabs and matching PIVC tips were collected by a research nurse from 10 hospitalised medical/surgical patients at catheter removal. All swabs and PIVCs underwent traditional culture and high-throughput sequencing. The bacterial communities on PIVC skin swabs and matching PIVCs were diverse and significantly associated (correlation coefficient = 0.7, p<0.001). Methylobacterium spp. was the dominant genus in all PIVC tip samples, but not so for skin swabs. Sixty-one percent of all reads from the PIVC tips and 36% of all reads from the skin swabs belonged to this genus. Staphylococcus spp., (26%), Pseudomonas spp., (10%) and Acinetobacter spp. (10%) were detected from skin swabs but not from PIVC tips. Most skin associated bacteria commonly associated with CRBSIs were observed on skin sites, but not on PIVCs. Diverse bacterial communities were observed at skin sites despite skin decolonization at PIVC insertion. The positive association of skin and PIVC tip communities provides further evidence that skin is a major source of PIVC colonisation via bacterial migration but microbes present may be different to those traditionally identified via culture methods. The results provide new insights into the colonisation of catheters and potential pathogenesis of bacteria associated with CRBSI, and may assist in developing new strategies designed to reduce the risk of CRBSI.  相似文献   
48.
49.
Enhanced oxidative stress plays an important role in the progression and onset of diabetes and its complications. Strategies or efforts meant to reduce the oxidative stress are needed which may mitigate these pathogenic processes. The present study aims to investigate the in vitro ameliorative potential of nine antioxidant molecules in L6 myotubes under oxidative stress condition induced by 4-hydroxy-2-nonenal and also to comprehend the gene expression patterns of oxidative stress genes upon the supplementation of different antioxidants in induced stress condition. The study results demonstrated a marked increase in the level of malondialdehyde and protein carbonyl content with a subsequent increase in the free radicals that was reversed by the pretreatment of different dietary antioxidant. From the expression analysis of the oxidative stress genes, it is evident that the expression of these genes is modulated by the presence of antioxidants. The highest expression was found in the cells treated with Insulin in conjugation with an antioxidant. Resveratrol is the most potent modulator followed by Mangiferin, Estragole, and Capsaicin. This comparative analysis ascertains the potency of Resveratrol along with Insulin in scavenging the reactive oxygen species (ROS) generated under induced stress conditions through antioxidant defense mechanism against excessive ROS production, contributing to the prevention of oxidative damage in L6 myotubes.  相似文献   
50.
Amino acid substitutions at nonconserved protein positions can have noncanonical and “long-distance” outcomes on protein function. Such outcomes might arise from changes in the internal protein communication network, which is often accompanied by changes in structural flexibility. To test this, we calculated flexibilities and dynamic coupling for positions in the linker region of the lactose repressor protein. This region contains nonconserved positions for which substitutions alter DNA-binding affinity. We first chose to study 11 substitutions at position 52. In computations, substitutions showed long-range effects on flexibilities of DNA-binding positions, and the degree of flexibility change correlated with experimentally measured changes in DNA binding. Substitutions also altered dynamic coupling to DNA-binding positions in a manner that captured other experimentally determined functional changes. Next, we broadened calculations to consider the dynamic coupling between 17 linker positions and the DNA-binding domain. Experimentally, these linker positions exhibited a wide range of substitution outcomes: Four conserved positions tolerated hardly any substitutions (“toggle”), ten nonconserved positions showed progressive changes from a range of substitutions (“rheostat”), and three nonconserved positions tolerated almost all substitutions (“neutral”). In computations with wild-type lactose repressor protein, the dynamic couplings between the DNA-binding domain and these linker positions showed varied degrees of asymmetry that correlated with the observed toggle/rheostat/neutral substitution outcomes. Thus, we propose that long-range and noncanonical substitutions outcomes at nonconserved positions arise from rewiring long-range communication among functionally important positions. Such calculations might enable predictions for substitution outcomes at a range of nonconserved positions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号