首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   300篇
  免费   22篇
  2023年   4篇
  2022年   8篇
  2021年   11篇
  2020年   11篇
  2019年   18篇
  2018年   16篇
  2017年   12篇
  2016年   12篇
  2015年   18篇
  2014年   16篇
  2013年   16篇
  2012年   22篇
  2011年   21篇
  2010年   9篇
  2009年   9篇
  2008年   9篇
  2007年   11篇
  2006年   14篇
  2005年   13篇
  2004年   13篇
  2003年   13篇
  2002年   9篇
  2001年   6篇
  2000年   3篇
  1999年   2篇
  1998年   4篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1992年   4篇
  1990年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1973年   1篇
  1970年   1篇
  1965年   1篇
  1963年   1篇
排序方式: 共有322条查询结果,搜索用时 15 毫秒
11.
Tyramine derivatives 3–27 were synthesized by using conventional and environmental friendly ultrasonic techniques. These derivatives were then evaluated for the first time for their α-glucosidase (Sources: Saccharomyces cerevisiae and mammalian rat-intestinal acetone powder) inhibitory activity by using in vitro mechanism-based biochemical assays. Compounds 7, 14, 20, 21 and 26 were found to be more active (IC50?=?49.7?±?0.4, 318.8?±?3.7, 23.5?±?0.9, 302.0?±?7.3 and 230.7?±?4.0?μM, respectively) than the standard drug, acarbose (IC50?=?840.0?±?1.73?μM (observed) and 780?±?0.028?μM (reported)) against α-glucosidase obtained from Saccharomyces cerevisiae. Kinetic studies were carried out on the most active members of the series in order to determine their mode of inhibition and dissociation constants. Compounds 7, 20 and 26 were found to be the competitive inhibitors of α-glucosidase. These compounds were also screened for their protein antiglycation, and dipeptidyl peptidase-IV (DPP-IV) inhibitory activities. Only compounds 20, 22 and 27 showed weak antiglycation activity with IC50 values 505.27?±?5.95, 581.87?±?5.50 and 440.58?±?2.74?μM, respectively. All the compounds were found to be inactive against DDP-IV enzyme. Inhibition of α-glucosidase, DPP-IV enzymes and glycation of proteins are valid targets for the discovery of antidiabetic drugs. Cytotoxicity of compounds 327 was also evaluated by using mouse fibroblast 3T3 cell lines. All the compounds were found to be noncytotoxic. The current study describes the synthesis α-glucosidase inhibitory activity of derivatives, based on a natural product tyramine template. The compounds reported here may serve as the starting point for the design and development of novel α-glucosidase inhibitors as antidiabetic agents.  相似文献   
12.
Investigation of yellow flower extract of Tagetes patula L. led to the identification of an aggregate of five phytoceramides. Among them, (2R)‐2‐hydroxy‐N‐[(2S,3S,4R,8E)‐1,3,4‐trihydroxyicos‐8‐en‐2‐yl]icosanamide, (2R)‐2‐hydroxy‐N‐[(2S,3S,4R,8E)‐1,3,4‐trihydroxyicos‐8‐en‐2‐yl]heneicosanamide, (2R)‐2‐hydroxy‐N‐[(2S,3S,4R,8E)‐1,3,4‐trihydroxyicos‐8‐en‐2‐yl]docosanamide, and (2R)‐2‐hydroxy‐N‐[(2S,3S,4R,8E)‐1,3,4‐trihydroxyicos‐8‐en‐2‐yl]tricosanamide were identified as new compounds and termed as tagetceramides, whereas (2R)‐2‐hydroxy‐N‐[(2S,3S,4R,8E)‐1,3,4‐trihydroxyicos‐8‐en‐2‐yl]tetracosanamide was a known ceramide. A steroid (β‐sitosterol glucoside) was also isolated from the subsequent fraction. The structures of these compounds were determined on the basis of spectroscopic analyses, as well as chemical method. Several other compounds were also identified by GC/MS analysis. The fractions and some commercial products, a ceramide HFA, β‐sitosterol, and stigmasterol were evaluated against an economically important cyst nematode, Heterodera zeae. Ceramide HFA showed 100 % mortality, whereas, β‐sitosterol and stigmasterol were 40–50 % active, at 1 % concentration after 24 h of exposure time, while β‐sitosterol glucoside revealed no activity against the nematode.  相似文献   
13.
14.
  • High temperature induces several proteins in plants that enhance tolerance to high temperature shock. The fate of proteins synthesised in microbial cells or secreted into culture media by interacting microbes has not been fully elucidated. The present investigation aimed to characterise plant growth‐promoting rhizobacteria (PGPR) isolated from the rhizosphere of wheat genotypes (differing in tolerance to high temperature stress) and evaluate their performance as bioinoculant for use in wheat.
  • Four bacterial strains, viz. Pseudomonas brassicacearum, Bacillus thuringiensis, Bacillus cereus strain W6 and Bacillus subtilis, were isolated from the rhizosphere of heat‐stressed and unstressed wheat genotypes. The wheat genotypes were exposed to high temperature stress at 45 °C for 10 days (3 h daily) at pre‐anthesis phase. Isolates were identified on the basis of morphology and biochemical characteristics, 16S rRNA gene sequencing and whole cell protein profiles. Results were further complemented by size exclusion chromatography (SEC) with fast protein liquid chromatography (FPLC) and SDS PAGE of 80% ammonium sulphate precipitates of the cell‐free supernatants.
  • Isolates were positive for catalase, oxidases and antimicrobial activity . P. brassicacearum from the rhizosphere of the heat‐tolerant genotype was more efficient in phosphate solubilisation, bacteriocin production, antifungal and antibacterial activity against Helminthosporium sativum, Fusarium moniliforme and Klebsiella pneumonia, respectively. The inoculated seedlings had significantly higher root and shoot fresh weight, enhanced activity of antioxidant enzymes, proline and protein content. Total profiling of the culture with SDS‐PAGE indicated expression of new protein bands in 95 kDa in P. brassicacearum.
  • Temperature‐induced changes in PGPR isolates are similar to those in the host plant. P. brassicacearum may be a good candidate for use in biofertiliser production for plants exposed to high temperature stress.
  相似文献   
15.
DNA-enzymes (Dzs) usually cleave short synthetic target RNAs very efficiently, but this activity diminishes significantly when tested on full-length RNAs, primarily because of the rigid secondary structures near the target sequence. We identified two Dzs, one each for 81-17 and 10-23 Dz, which cleaved the human immunodeficiency virus type 1 (HIV-1) Gag RNA poorly. We sought to use short oligodeoxynucleotides (ODNs) with the hope that it will facilitate Dz-mediated cleavage. The efficiencies of several ODNs were analyzed for their ability to augment the 8-17 Dz-mediated cleavage. We observed that ODNs that hybridized close to 5' and 3' ends of the target sequence were able to enhance significantly 8-17 Dz-mediated cleavage activity in a dose-dependent manner. The same was true for 10-23 Dz with ODNs that hybridized close to the target site. Thus, it was possible to enhance significantly the cleavage activity of poorly cleaving HIV-1 Gag-specific Dzs by using sequence-specific ODNs. This combination of antisense and catalytic Dz will, in principle, result in more effective gene suppression that could be exploited for therapeutic purposes.  相似文献   
16.
An important role has been recently reported for bacterial biofilm in the pathophysiology of chronic diseases, such as chronic rhinosinusitis (CRS). CRS, affecting sinonasal mucosa, is a persistent inflammatory condition with a high prevalence around the world. Although the exact pathological mechanism of this disease has not been elicited yet, biofilm formation is known to lead to a more significant symptom burden and major objective clinical indicators. The high prevalence of multidrug-resistant bacteria has severely restricted the application of antibiotics in recent years. Furthermore, systemic antibiotic therapy, on top of its insufficient concentration to eradicate bacteria in the sinonasal biofilm, often causes toxicity, antibiotic resistance, and an effect on the natural microbiota, in patients. Thus, coming up with alternative therapeutic options instead of systemic antibiotic therapy is emphasized in the treatment of bacterial biofilm in CRS patients. The use of topical antibiotic therapy and antibiotic eluting sinus stents that induce higher antibiotic concentration, and decrease side effects could be helpful. Besides, recent research recognized that various natural products, nitric oxide, and bacteriophage therapy, in addition to the hindered biofilm formation, could degrade the established bacterial biofilm. However, despite these improvements, new antibacterial agents and CRS biofilm interactions are complicated and need extensive research. Finally, most studies were performed in vitro, and more preclinical animal models and human studies are required to confirm the collected data. The present review is specifically discussing potential therapeutic strategies for the treatment of bacterial biofilm in CRS patients.  相似文献   
17.
Plant and Soil - Plant growth promoting bacteria (PGPB) containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase can play an important role in abiotic stress tolerance in plants, particularly...  相似文献   
18.
Molecular Biology Reports - Mulberry (Morus alba L.) is the sole food source for the mulberry silkworm, Bombyx mori and therefore important for sericulture industry. Different abiotic stress...  相似文献   
19.
The present study deals with the isolation of plant growth promoting rhizobacteria (PGPR) from rice (variety NIAB IRRI-9) and the beneficial effects of these inoculants on two Basmati rice varieties. Nitrogen-fixing activity (acetylene-reduction activity) was detected in the roots and submerged shoots of field-grown rice variety NIAB IRRI-9. Estimation of the population size of diazotrophic bacteria by ARA-based MPN (acetylene reduction assay-based most probable number) in roots and shoots indicated about 10(5)-10(6) counts/g dry weight at panicle initiation and grain filling stages. Four bacterial isolates from rice roots and shoots were obtained in pure culture which produced phytohormone indoleacetic acid (IAA) in the growth medium. Among these, three isolates S1, S4, and R3 reduced acetylene to ethylene in nitrogen-free semi-solid medium. Morphological and physiological characteristics of the isolates indicated that three nitrogen-fixing isolates S1, S4, and R3 belonged to the genus Enterobacter, while the non-fixing isolate R8 belonged to the genus Aeromonas. 16S rRNA sequence of one isolate from root (R8) and one isolate from shoot (S1) was obtained which confirmed identification of the isolates as Aeromonas veronii and Enterobacter cloacae, respectively. The 1517-nucleotide-long sequence of the isolate R8 showed 99% similarity with Aeromonas veronii (accession No. AF099023) while partial 16S rRNA sequence (two stretches of total 1271 nucleotide length) of S1 showed 97% similarity with the sequence of Enterobacter cloacae (accession No. AJ251469). The seedlings of two rice varieties Basmati 385 and Super Basmati were inoculated with the four bacterial isolates from rice and one Azospirillum brasilense strain Wb3, which was isolated from wheat. In the rice variety Basmati 385, maximum increase in root area and plant biomass was obtained in plants inoculated with Enterobacter S1 and Azospirillum Wb3, whereas in the rice variety Super Basmati, inoculation with Enterobacter R3 resulted in maximum increase of root area and plant biomass. Nitrogen fixation was quantified by using 15N isotopic dilution method. Maximum fixation was observed in Basmati 385 with the inoculants Azospirillum Wb3 and Enterobacter S1 where nearly 46% and 41% of the nitrogen was derived from atmosphere (%Ndfa), respectively. In general, higher nitrogen fixation was observed in variety Basmati 385 than in Super Basmati, and different bacterial strains were found more effective as inoculants for the rice varieties Basmati 385 and Super Basmati.  相似文献   
20.
Human genome project: pharmacogenomics and drug development   总被引:2,自引:0,他引:2  
Now that all 30,000 or so genes that make up the human genome have been deciphered, pharmaceutical industries are emerging to capitalize the custom based drug treatment. Understanding human genetic variation promises to have a great impact on our ability to uncover the cause of individual variation in response to therapeutics. The study of association between genetics and drug response is called pharmacogenomics. The potential implication of genomics and pharmacogenomics in clinical research and clinical medicine is that disease could be treated according to the interindividual differences in drug disposition and effects, thereby enhancing the drug discovery and providing a stronger scientific basis of each patient's genetic constitution. Sequence information derived from the genomes of many individuals is leading to the rapid discovery of single nucleotide polymorphisms or SNPs. Detection of these human polymorphisms will fuel the discipline of pharmacogenomics by developing more personalized drug therapies. A greater understanding of the way in which individuals with a particular genotype respond to a drug allows manufacturers to identify population subgroups that will benefit most from a particular drug. The increasing emphasis on pharmacogenomics is likely to raise ethical and legal questions regarding, among other things, the design of research studies, the construction of clinical trials and the pricing of drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号