首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   338篇
  免费   41篇
  379篇
  2020年   5篇
  2019年   4篇
  2015年   6篇
  2014年   9篇
  2013年   7篇
  2012年   8篇
  2011年   13篇
  2010年   6篇
  2009年   6篇
  2008年   11篇
  2007年   11篇
  2006年   6篇
  2005年   5篇
  2004年   13篇
  2003年   6篇
  2002年   12篇
  2001年   6篇
  2000年   12篇
  1999年   6篇
  1998年   8篇
  1995年   4篇
  1994年   4篇
  1993年   7篇
  1992年   8篇
  1991年   5篇
  1990年   8篇
  1989年   5篇
  1988年   6篇
  1987年   5篇
  1986年   16篇
  1985年   9篇
  1984年   9篇
  1983年   9篇
  1982年   6篇
  1980年   4篇
  1979年   8篇
  1978年   4篇
  1976年   10篇
  1975年   4篇
  1974年   7篇
  1973年   9篇
  1972年   8篇
  1971年   4篇
  1970年   4篇
  1969年   4篇
  1968年   6篇
  1967年   7篇
  1963年   4篇
  1959年   4篇
  1953年   3篇
排序方式: 共有379条查询结果,搜索用时 12 毫秒
31.
The effect of rifamycin SV on metabolic performance and cell viability was studied using isolated hepatocytes from fed, starved and glutathione (GSH) depleted rats. The relationships between GSH depletion, nutritional status of the cells, glucose metabolism, lactate dehydrogenase (LDH) leakage and malondialdehyde (MDA) production in the presence of rifamycin SV and transition metal ions was investigated. Glucose metabolism was impaired in isolated hepatocytes from both fed and starved animals, the effect is dependent on the rifamycin SV concentration and is enhanced by copper (II). Oxygen consumption by isolated hepatocytes from starved rats was also increased by copper (II) and a partial inhibition due to catalase was observed. Cellular GSH levels which decrease with increasing the rifamycin SV concentration were almost depleted in the presence of copper (II). A correlation between GSH depletion and LDH leakage was observed in fed and starved cells. Catalase induced a slight inhibition of the impairment of gluconeogenesis, GSH depletion and LDH leakage in starved hepatocytes incubated with rifamycin SV, iron (II) and copper (II) salts. Lipid peroxidation measured as MDA production by isolated hepatocytes was also augmented by rifamycin SV and copper (II), especially in hepatic cells isolated from starved and GSH depleted rats. Higher cytotoxicity was observed in isolated hepatocytes from fasted animals when compared with fed or GSH depleted animals. It seems likely that in addition to GSH level, there are other factors which may have an influence on the susceptibility of hepatic cells towards xenobiotic induced cytotoxicity.  相似文献   
32.
Malaria is caused by protozoan parasites belonging to the phylum Apicomplexa. These obligate intracellular parasites depend on the successful invasion of an appropriate host cell for their survival. This article is a broad overview of the molecular strategies employed by the merozoite, an invasive form of the malaria parasite, to successfully invade a suitable red blood cell.  相似文献   
33.
Weed invasion success is strongly influenced by availability of seed dispersal vectors, which may include animals. We examined the potential of several small introduced mammals (mice, kiore, ship rats and possums) to disperse germinable seeds in New Zealand. Captive animals were fed fleshy fruit of weeds (Berberis glaucocarpa, Cotoneaster spp., Crataegus monogyna, Ilex aquifolium, Leycesteria formosa, Ligustrum sinense, Lonicera japonica, Passiflora mollissima, Pyracantha angustifolia, Sorbus hupehensis) and native species (Coprosma spp., Prumnopitys ferruginea and Solanum aviculare). We recorded the percentage of fruit consumed, seed ingested and gut passage time. Faeces were collected and the seeds extracted and tested for germination potential in an unheated glasshouse (two weed species) or under controlled conditions (11 species). The smallest rodents (mice and kiore) generally destroyed all seeds eaten. Large numbers of viable seeds of the small‐seeded (<1 mg) species, L. formosa and S. aviculare, passed through ship rats. Possums consumed the seeds of all adventive and native fruits except P. ferruginea. The proportion of seeds recovered intact from possum faeces varied with plant species and ranged from 6 to 83%. The time required for 50% of all seeds to be passed by possums ranged from 2.5 to 5.5 days with an average of 3.7 days, and was generally unrelated to simple fruit parameters such as percentage pulp and moisture content. For seeds where germination also occurred in the uneaten controls, the germination of seed from possums ranged from 3 to 78%. Germination was mostly lower in seeds from possums than in the controls, where differences were significant. Possums have major potential to disperse a wide range of fleshy fruit‐producing native and introduced plant species. Ship rats have the potential to disperse those with very small seeds.  相似文献   
34.
The severe dystroglycanopathy known as a form of limb-girdle muscular dystrophy (LGMD2P) is an autosomal recessive disease caused by the point mutation T192M in α-dystroglycan. Functional expression analysis in vitro and in vivo indicated that the mutation was responsible for a decrease in posttranslational glycosylation of dystroglycan, eventually interfering with its extracellular-matrix receptor function and laminin binding in skeletal muscle and brain. The X-ray crystal structure of the missense variant T190M of the murine N-terminal domain of α-dystroglycan (50-313) has been determined, and showed an overall topology (Ig-like domain followed by a basket-shaped domain reminiscent of the small subunit ribosomal protein S6) very similar to that of the wild-type structure. The crystallographic analysis revealed a change of the conformation assumed by the highly flexible loop encompassing residues 159–180. Moreover, a solvent shell reorganization around Met190 affects the interaction between the B1–B5 anti-parallel strands forming part of the floor of the basket-shaped domain, with likely repercussions on the folding stability of the protein domain(s) and on the overall molecular flexibility. Chemical denaturation and limited proteolysis experiments point to a decreased stability of the T190M variant with respect to its wild-type counterpart. This mutation may render the entire L-shaped protein architecture less flexible. The overall reduced flexibility and stability may affect the functional properties of α-dystroglycan via negatively influencing its binding behavior to factors needed for dystroglycan maturation, and may lay the molecular basis of the T190M-driven primary dystroglycanopathy.  相似文献   
35.
Anti-apoptotic Bcl-2 family proteins are important oncology therapeutic targets. To date, BH3 mimetics that abrogate anti-apoptotic activity have largely been directed at Bcl-2 and/or Bcl-xL. One observed mechanism of resistance to these inhibitors is increased Mcl-1 levels in cells exposed to such therapeutics. For this reason, and because Mcl-1 is important in the onset of lymphoid, myeloid, and other cancers, it has become a target of great interest. However, small molecule inhibitors displaying potency and selectivity for Mcl-1 are lacking. Identifying such compounds has been challenging due to difficulties in translating the target selectivity observed at the biochemical level to the cellular level. Herein we report the results of an HTS strategy coupled with directed hit optimization. Compounds identified have selective Mcl-1 inhibitory activity with greater than 100-fold reduced affinity for Bcl-xL. The selectivity of these compounds at the cellular level was validated using BH3 profiling, a novel personalized diagnostic approach. This assay provides an important functional biomarker that allows for the characterization of cells based upon their dependencies on various anti-apoptotic Bcl-2 proteins. We demonstrate that cells dependent on Mcl-1 or Bcl-2/Bcl-xL for survival are commensurately responsive to compounds that genuinely target those proteins. The identification of compound 9 with uniquely validated and selective Mcl-1 inhibitory activity provides a valuable tool to those studying the intrinsic apoptosis pathway and highlights an important approach in the development of a first-in-class cancer therapeutic.  相似文献   
36.
37.
Rho Kinase (ROCK) is a serine/threonine kinase whose inhibition could prove beneficial in numerous therapeutic areas. We have developed a promising class of ATP-competitive inhibitors based upon a benzimidazole scaffold, which show excellent potency toward ROCK (IC50 <10 nM). This report details the optimization of selectivity for ROCK over other related kinases such as Protein kinase A (PKA).  相似文献   
38.
The sxy-1 mutation of Haemophilus influenzae causes a 100- to 1,000-fold increase in spontaneous natural competence. We have used mapping and sequencing to identify this mutation as a G-to-A transition in an open reading frame adjacent to the rec-1 locus. This mutation substitutes valine for isoleucine at amino acid 19 of the protein specified by this gene (now named sxy). A multicopy plasmid containing the wild-type sxy gene confers constitutive competence on wild-type cells. Cells carrying this plasmid exhibit, in all stages of growth, DNA uptake levels and transformation frequencies as high those normally seen only after full induction of competence by starvation; deletion of part of the sxy gene from the plasmid abolishes this effect. In contrast, a transposon insertion in sxy entirely prevents both DNA uptake and transformation, indicating that sxy encodes a function essential for competence. These findings suggest that sxy may act as a positive regulator of competence. However, because cells carrying the transposon-inactivated sxy::Tn allele grow slowly under conditions that do not induce competence, sxy may also have a role in noncompetent cells.  相似文献   
39.
In skeletal muscle, excitation–contraction (EC) coupling requires depolarization-induced conformational rearrangements in L-type Ca2+ channel (CaV1.1) to be communicated to the type 1 ryanodine-sensitive Ca2+ release channel (RYR1) of the sarcoplasmic reticulum (SR) via transient protein–protein interactions. Although the molecular mechanism that underlies conformational coupling between CaV1.1 and RYR1 has been investigated intensely for more than 25 years, the question of whether such signaling occurs via a direct interaction between the principal, voltage-sensing α1S subunit of CaV1.1 and RYR1 or through an intermediary protein persists. A substantial body of evidence supports the idea that the auxiliary β1a subunit of CaV1.1 is a conduit for this intermolecular communication. However, a direct role for β1a has been difficult to test because β1a serves two other functions that are prerequisite for conformational coupling between CaV1.1 and RYR1. Specifically, β1a promotes efficient membrane expression of CaV1.1 and facilitates the tetradic ultrastructural arrangement of CaV1.1 channels within plasma membrane–SR junctions. In this paper, we demonstrate that overexpression of the RGK protein Rem, an established β subunit–interacting protein, in adult mouse flexor digitorum brevis fibers markedly reduces voltage-induced myoplasmic Ca2+ transients without greatly affecting CaV1.1 targeting, intramembrane gating charge movement, or releasable SR Ca2+ store content. In contrast, a β1a-binding–deficient Rem triple mutant (R200A/L227A/H229A) has little effect on myoplasmic Ca2+ release in response to membrane depolarization. Thus, Rem effectively uncouples the voltage sensors of CaV1.1 from RYR1-mediated SR Ca2+ release via its ability to interact with β1a. Our findings reveal Rem-expressing adult muscle as an experimental system that may prove useful in the definition of the precise role of the β1a subunit in skeletal-type EC coupling.  相似文献   
40.
Ca(2+) influx through L-type channels is critical for numerous physiological functions. Relatively little is known about modulation of neuronal L-type Ca(2+) channels. We studied modulation of neuronal Ca(V)1.2c channels heterologously expressed in HEK293 cells with each of the known muscarinic acetylcholine receptor subtypes. Galphaq/11-coupled M1, M3, and M5 receptors each produced robust inhibition of Ca(V)1.2c, whereas Galphai/o-coupled M2 and M4 receptors were ineffective. Channel inhibition through M1 receptors was studied in detail and was found to be kinetically slow, voltage-independent, and pertussis toxin-insensitive. Slow inhibition of Ca(V)1.2c was blocked by coexpressing RGS2 or RGS3T or by intracellular dialysis with antibodies directed against Galphaq/11. In contrast, inhibition was not reduced by coexpressing betaARK1ct or Galphat. These results indicate that slow inhibition required signaling by Galphaq/11, but not Gbetagamma, subunits. Slow inhibition did not require Ca(2+) transients or Ca(2+) influx through Ca(V)1.2c channels. Additionally, slow inhibition was insensitive to pharmacological inhibitors of phospholipases, protein kinases, and protein phosphatases. Intracellular BAPTA prevented slow inhibition via a mechanism other than Ca(2+) chelation. The cardiac splice-variant of Ca(V)1.2 (Ca(V)1.2a) and a splice-variant of the neuronal/neuroendocrine Ca(V)1.3 channel also appeared to undergo slow muscarinic inhibition. Thus, slow muscarinic inhibition may be a general characteristic of L-type channels having widespread physiological significance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号