首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   548篇
  免费   36篇
  国内免费   1篇
  585篇
  2022年   3篇
  2021年   9篇
  2020年   4篇
  2019年   5篇
  2018年   10篇
  2017年   4篇
  2016年   6篇
  2015年   20篇
  2014年   19篇
  2013年   28篇
  2012年   30篇
  2011年   34篇
  2010年   28篇
  2009年   24篇
  2008年   29篇
  2007年   29篇
  2006年   24篇
  2005年   25篇
  2004年   21篇
  2003年   18篇
  2002年   21篇
  2001年   14篇
  2000年   7篇
  1999年   4篇
  1998年   5篇
  1997年   9篇
  1996年   4篇
  1994年   5篇
  1993年   7篇
  1992年   7篇
  1991年   8篇
  1990年   10篇
  1989年   4篇
  1988年   14篇
  1985年   5篇
  1984年   4篇
  1983年   4篇
  1982年   3篇
  1981年   7篇
  1980年   5篇
  1979年   3篇
  1978年   3篇
  1975年   3篇
  1974年   6篇
  1973年   3篇
  1971年   3篇
  1903年   2篇
  1902年   2篇
  1892年   3篇
  1890年   3篇
排序方式: 共有585条查询结果,搜索用时 9 毫秒
11.
12.
Bacteriophage lambda integrase (Int) catalyzes site-specific recombination between pairs of attachment (att) sites. The att sites contain weak Int-binding sites called core-type sites that are separated by a 7-bp overlap region, where cleavage and strand exchange occur. We have characterized a number of mutant Int proteins with substitutions at positions S282 (S282A, S282F, and S282T), S286 (S286A, S286L, and S286T), and R293 (R293E, R293K, and R293Q). We investigated the core- and arm-binding properties and cooperativity of the mutant proteins, their ability to catalyze cleavage, and their ability to form and resolve Holliday junctions. Our kinetic analyses have identified synapsis as the rate-limiting step in excisive recombination. The IntS282 and IntS286 mutants show defects in synapsis in the bent-L and excisive pathways, respectively, while the IntR293 mutants exhibit synapsis defects in both the excision and bent-L pathways. The results of our study support earlier findings that the catalytic domain also serves a role in binding to core-type sites, that the core contacts made by this domain are important for both synapsis and catalysis, and that Int contacts core-type sites differently among the four recombination pathways. We speculate that these residues are important for the proper positioning of the catalytic residues involved in the recombination reaction and that their positions differ in the distinct nucleoprotein architectures formed during each pathway. Finally, we found that not all catalytic events in excision follow synapsis: the attL site probably undergoes several rounds of cleavage and ligation before it synapses and exchanges DNA with attR.  相似文献   
13.
Plants have evolved strategies of stimulating and supporting specific groups of antagonistic microorganisms in the rhizosphere as a defense against diseases caused by soilborne plant pathogens owing to a lack of genetic resistance to some of the most common and widespread soilborne pathogens. Some of the best examples of natural microbial defense of plant roots occur in disease suppressive soils. Soil suppressiveness against many different diseases has been described. Take-all is an important root disease of wheat, and soils become suppressive to take-all when wheat or barley is grown continuously in a field following a disease outbreak; this phenomenon is known as take-all decline (TAD). In Washington State, USA and The Netherlands, TAD results from the enrichment during monoculture of populations of 2,4-diacetylphloroglucinol (2,4-DAPG)-producing Pseudomonas fluorescens to a density of 10 (5) CFU/g of root, the threshold required to suppress the take-all pathogen, Gaeumannomyces graminis var. tritici. 2,4-DAPG-producing P. fluorescens also are enriched by monoculture of other crops such as pea and flax, and evidence is accumulating that 2,4-DAPG producers contribute to the defense of plant roots in many different agroecosystems. At this time, 22 distinct genotypes of 2,4-DAPG producers (designated A - T, PfY and PfZ) have been defined by whole-cell repetitive sequence-based (rep)-PCR analysis, restriction fragment length polymorphism (RFLP) analysis of PHLD, and phylogenetic analysis of PHLD, but the number of genotypes is expected to increase. The genotype of an isolate is predictive of its rhizosphere competence on wheat and pea. Multiple genotypes often occur in a single soil and the crop species grown modulates the outcome of the competition among these genotypes in the rhizosphere. 2,4-DAPG producers are highly effective biocontrol agents against a variety of plant diseases and ideally suited for serving as vectors for expressing other biocontrol traits in the rhizosphere.  相似文献   
14.
Chelonid herpesvirus (ChHV) and mycoplasmal infections cause similar clinical signs in terrestrial tortoises and may be the most important causative agents of rhinitis-stomatitis complex, a common disease in captive tortoises worldwide. Currently, diagnosis of ChHV and Mycoplasma spp. infections is most often based on serologic testing. However, serologic results only detect past exposure, and the specificity of these tests can be reduced due to antigenic cross-reactions with other pathogens. Molecular-based techniques could help to define the causative agent and to better manage infected tortoises. Using polymerase chain reaction, we analyzed 63 tortoises (59 spur-thighed tortoise, Testudo graeca; three Greek tortoise, Testudo ibera; and one Russian tortoise, Agryonemys horsfieldii) with clinical signs of rhinitis-stomatitis complex to identify the causative agent. Molecular evidence of ChHV type I (24%), type II (3%), and Mycoplasma agassizii (6%) infections, as well as coinfection of Mycoplasma-ChHV and both types of ChHV, were detected. Both ChHV and M. agassizii are considered pathogenic in captive tortoises and both are a threat to wild populations. However, neither agent was detected from most of the symptomatic tortoises we evaluated, indicating that other agents could be involved in the rhinitis-stomatitis complex.  相似文献   
15.
Split-hand/foot malformation with long-bone deficiency (SHFLD) is a rare, severe limb deformity characterized by tibia aplasia with or without split-hand/split-foot deformity. Identification of genetic susceptibility loci for SHFLD has been unsuccessful because of its rare incidence, variable phenotypic expression and associated anomalies, and uncertain inheritance pattern. SHFLD is usually inherited as an autosomal dominant trait with reduced penetrance, although recessive inheritance has also been postulated. We conducted a genomewide linkage analysis, using a 10K SNP array in a large consanguineous family (UR078) from the United Arab Emirates (UAE) who had disease transmission consistent with an autosomal dominant inheritance pattern. The study identified two novel SHFLD susceptibility loci at 1q42.2-q43 (nonparametric linkage [NPL] 9.8, P=.000065) and 6q14.1 (NPL 7.12, P=.000897). These results were also supported by multipoint parametric linkage analysis. Maximum multipoint LOD scores of 3.20 and 3.78 were detected for genomic locations 1q42.2-43 and 6q14.1, respectively, with the use of an autosomal dominant mode of inheritance with reduced penetrance. Haplotype analysis with informative crossovers enabled mapping of the SHFLD loci to a region of approximately 18.38 cM (8.4 Mb) between single-nucleotide polymorphisms rs1124110 and rs535043 on 1q42.2-q43 and to a region of approximately 1.96 cM (4.1 Mb) between rs623155 and rs1547251 on 6q14.1. The study identified two novel loci for the SHFLD phenotype in this UAE family.  相似文献   
16.
The role of imazaquin in the absorption, translocation, and distribution of chlormequat chloride in CYCOCEL* CL has been studied in winter wheat. Three treatments were applied to the 5th leaf of the main stem at growth stage 5 (Feekes Large scale): (1)14C-chlormequat chloride, (2) CYCOCEL* CL containing14C-chlormequat chloride, and (3) CYCOCEL* CL containing14C-imazaquin. Tracing of the radioactivity was followed in the treated leaf, main stem, tillers, and roots. Results showed that more than 85% of the radioactivity absorbed remained in the treated leaf. Ten days after the application of chlormequat chloride alone, 94.4% of the14C-chlormequat was found in the treated leaf, 2.9% in the main stem, 1.2% in the tillers, and 1.4% in the root system versus 88.2, 8.2, 2.1, and 1.4%, respectively, for the chlormequat chloride plus imazaquin treatment. It was concluded that imazaquin increases the mobility and the pattern of distribution of chlormequat chloride in the plant.  相似文献   
17.
Strigol and some of its synthetic precursors and analogs are known to be germination stimulants for broomrape (Orobanche ramosa) and witchweed (Striga asiatica). Fifteen synthetic terpenoids, similar in structure to one of the four rings of the strigol molecule, were evaluated in two bioassays as seed germination stimulants with broomrape, and nine were found to be active. Five of the more active compounds contained ester groups. Whereas the study was intended primarily to evaluate forced germination of broomrape by aqueous solutions, the results are almost qualitatively identical for broomrape and witchweed. Monocyclic compounds with chemical structures similar to two of the rings of strigol have now been shown to possess significant bioactivity as germination stimulants.Mention of a trademark, proprietary product, or vendor does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products or vendors that may also be suitable.  相似文献   
18.

Background and Scope

Weight loss success is dependent on the ability to refrain from regaining the lost weight in time. This feature was shown to be largely variable among individuals, and these differences, with their underlying molecular processes, are diverse and not completely elucidated. Altered plasma metabolites concentration could partly explain weight loss maintenance mechanisms. In the present work, a systems biology approach has been applied to investigate the potential mechanisms involved in weight loss maintenance within the Diogenes weight-loss intervention study.

Methods and Results

A genome wide association study identified SNPs associated with plasma glycine levels within the CPS1 (Carbamoyl-Phosphate Synthase 1) gene (rs10206976, p-value = 4.709e-11 and rs12613336, p-value = 1.368e-08). Furthermore, gene expression in the adipose tissue showed that CPS1 expression levels were associated with successful weight maintenance and with several SNPs within CPS1 (cis-eQTL). In order to contextualize these results, a gene-metabolite interaction network of CPS1 and glycine has been built and analyzed, showing functional enrichment in genes involved in lipid metabolism and one carbon pool by folate pathways.

Conclusions

CPS1 is the rate-limiting enzyme for the urea cycle, catalyzing carbamoyl phosphate from ammonia and bicarbonate in the mitochondria. Glycine and CPS1 are connected through the one-carbon pool by the folate pathway and the urea cycle. Furthermore, glycine could be linked to metabolic health and insulin sensitivity through the betaine osmolyte. These considerations, and the results from the present study, highlight a possible role of CPS1 and related pathways in weight loss maintenance, suggesting that it might be partly genetically determined in humans.  相似文献   
19.
20.
Chagas’ disease is caused by Trypanosoma cruzi, a protozoan transmitted to humans by blood-feeding insects, blood transfusion or congenitally. Previous research led us to discover a parasite proline racemase (TcPRAC) and to establish its validity as a target for the design of new chemotherapies against the disease, including its chronic form. A known inhibitor of proline racemases, 2-pyrrolecarboxylic acid (PYC), is water-insoluble. We synthesized soluble pyrazole derivatives, but they proved weak or inactive TcPRAC inhibitors. TcPRAC catalytic site is too small and constrained when bound to PYC to allow efficient search for new inhibitors by virtual screening. Forty-nine intermediate conformations between the opened enzyme structure and the closed liganded one were built by calculating a transition path with a method we developed. A wider range of chemical compounds could dock in the partially opened intermediate active site models in silico. Four models were selected for known substrates and weak inhibitors could dock in them and were used to screen chemical libraries. Two identified soluble compounds, (E)-4-oxopent-2-enoic acid (OxoPA) and its derivative (E)-5-bromo-4-oxopent-2-enoic acid (Br-OxoPA), are irreversible competitive inhibitors that presented stronger activity than PYC on TcPRAC. We show here that increasing doses of OxoPA and Br-OxoPA hamper T. cruzi intracellular differentiation and fate in mammalian host cells. Our data confirm that through to their binding mode, these molecules are interesting and promising as lead compounds for the development of chemotherapies against diseases where active proline racemases play essential roles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号