首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   289篇
  免费   24篇
  2023年   1篇
  2022年   3篇
  2021年   3篇
  2020年   1篇
  2019年   5篇
  2018年   2篇
  2017年   2篇
  2016年   8篇
  2015年   16篇
  2014年   16篇
  2013年   16篇
  2012年   22篇
  2011年   17篇
  2010年   17篇
  2009年   15篇
  2008年   23篇
  2007年   22篇
  2006年   21篇
  2005年   12篇
  2004年   20篇
  2003年   12篇
  2002年   6篇
  2001年   1篇
  2000年   1篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   1篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   4篇
  1980年   3篇
  1978年   1篇
  1977年   3篇
  1976年   2篇
排序方式: 共有313条查询结果,搜索用时 21 毫秒
171.
172.
A substantial proportion of human immunodeficiency virus type 1 (HIV-1)-infected individuals has cross-reactive neutralizing activity in serum, with a similar prevalence in progressors and long-term nonprogressors (LTNP). We studied whether disease progression in the face of cross-reactive neutralizing serum activity is due to fading neutralizing humoral immunity over time or to viral escape. In three LTNP and three progressors, high-titer cross-reactive HIV-1-specific neutralizing activity in serum against a multiclade pseudovirus panel was preserved during the entire clinical course of infection, even after AIDS diagnosis in progressors. However, while early HIV-1 variants from all six individuals could be neutralized by autologous serum, the autologous neutralizing activity declined during chronic infection. This could be attributed to viral escape and the apparent inability of the host to elicit neutralizing antibodies to the newly emerging viral escape variants. Escape from autologous neutralizing activity was not associated with a reduction in the viral replication rate in vitro. Escape from autologous serum with cross-reactive neutralizing activity coincided with an increase in the length of the variable loops and in the number of potential N-linked glycosylation sites in the viral envelope. Positive selection pressure was observed in the variable regions in envelope, suggesting that, at least in these individuals, these regions are targeted by humoral immunity with cross-reactive potential. Our results may imply that the ability of HIV-1 to rapidly escape cross-reactive autologous neutralizing antibody responses without the loss of viral fitness is the underlying explanation for the absent effect of potent cross-reactive neutralizing humoral immunity on the clinical course of infection.The need for an effective vaccine to prevent the global spread of human immunodeficiency virus type 1 (HIV-1) is well recognized. The ability to elicit broadly neutralizing antibodies (BrNAbs) is believed to be crucial to developing a successful vaccine, ideally to acquire protective immunity or, alternatively, to achieve a nonprogressive infection with viral loads sufficiently low to limit HIV-1 transmission (1, 39).During natural infection, antibodies that are able to neutralize autologous virus variants are elicited in the majority of HIV-1-infected individuals. Early in infection, these neutralizing antibodies (NAbs) are mainly type specific, due to the fact that they are primarily directed against the variable domains in the viral envelope, and allow for the rapid escape of HIV-1 from antibody neutralization (8, 9, 14, 15, 20, 28, 41). Escape from type-specific neutralizing humoral immunity has been associated with enormous sequence variation, particularly in variable loops 1 and 2 (V1V2) of the envelope protein where large insertions and deletions are observed, as well as with changes in the number of potential N-linked glycosylation sites (PNGS) in the envelope protein (8, 15, 19, 22, 25, 27-31, 41). The rapid escape of HIV-1 from autologous type-specific NAbs seems to be the underlying explanation for the absent correlation between autologous humoral immunity and HIV-1 disease course. Furthermore, we recently observed that the changes in envelope that are associated with escape from autologous neutralizing humoral immunity do not coincide with a loss of viral fitness (7), providing an additional explanation for the lack of protection from disease progression by the autologous type-specific NAb response.In the last couple of years, the focus of research has shifted toward neutralizing humoral immunity with cross-reactive activity, defined as the ability to neutralize a range of heterologous HIV-1 variants from different subtypes. It has become apparent that about one-third of HIV-1-infected individuals develop cross-reactive neutralizing activity in serum. However, the prevalence of cross-reactive neutralizing activity in serum was similar for HIV-infected individuals with a progressive disease course and long-term nonprogressors (LTNP) (11, 12, 34, 37).We studied the underlying explanation for this observation in three LTNP and three progressors who all had high-titer cross-reactive neutralizing activity in serum within 2 to 4 years after seroconversion (SC). In all individuals, we observed that the potent and cross-reactive neutralizing immunity was preserved during the entire course of infection. However, the presence of cross-reactive neutralizing activity in serum did not prevent rapid viral escape from humoral immunity, which coincided with changes in envelope similar to those described for escape from type-specific autologous humoral immunity. Although broadly neutralizing antibodies are assumed to target the more conserved epitopes that may lie in crucial parts of the viral envelope, escape from cross-reactive neutralizing activity did not coincide with a loss in viral fitness. Our findings underscore that vaccine-elicited cross-reactive neutralizing immunity should protect against HIV-1 acquisition, since protection from disease progression, even by humoral immunity with strong cross-reactivity, may be an unachievable goal.  相似文献   
173.
Understanding the determinants of neutralization sensitivity and resistance is important for the development of an effective human immunodeficiency virus type 1 (HIV-1) vaccine. In these studies, we have made use of the swarm of closely related envelope protein variants (quasispecies) from an extremely neutralization-resistant clinical isolate in order to identify mutations that conferred neutralization sensitivity to antibodies in sera from HIV-1-infected individuals. Here, we describe a virus with a rare mutation at position 179 in the V2 domain of gp120, where replacement of aspartic acid (D) by asparagine (N) converts a virus that is highly resistant to neutralization by multiple polyclonal and monoclonal antibodies, as well as antiviral entry inhibitors, to one that is sensitive to neutralization. Although the V2 domain sequence is highly variable, D at position 179 is highly conserved in HIV-1 and simian immunodeficiency virus (SIV) and is located within the LDI/V recognition motif of the recently described α4β7 receptor binding site. Our results suggest that the D179N mutation induces a conformational change that exposes epitopes in both the gp120 and the gp41 portions of the envelope protein, such as the CD4 binding site and the MPER, that are normally concealed by conformational masking. Our results suggest that D179 plays a central role in maintaining the conformation and infectivity of HIV-1 as well as mediating binding to α4β7.A major goal in human immunodeficiency virus type 1 (HIV-1) vaccine research is the identification of immunogens able to elicit protective immunity from HIV-1 infection. Results from the recent RV144 clinical trial in Thailand (53) have provided evidence that immunization with vaccines containing the recombinant HIV-1 envelope glycoprotein gp120 (6, 7) can protect humans from HIV infection when incorporated in a prime/boost immunization regimen. Although the level of protection observed in the RV144 trial (31%) was modest, it represents a significant advance in HIV-1 vaccine research and has rekindled the efforts to identify improved subunit vaccine antigens that might achieve even higher levels of protection. In these studies, we have sought to understand the molecular determinants of neutralization sensitivity and resistance in HIV-1 envelope proteins for the purpose of developing improved vaccine antigens.In previous studies (47), we have described a novel method of mutational analysis of the HIV-1 envelope protein, termed swarm analysis, for identification of mutations that confer sensitivity and/or resistance to broadly neutralizing antibodies (bNAbs). This method makes use of the natural amino acid sequence virus variation that occurs in each HIV-infected individual to establish panels of closely related envelope proteins that differ from each other by a limited number of amino acid substitutions. We have previously used this method to identify a novel amino acid substitution in gp41 that conferred sensitivity to neutralization by monoclonal and polyclonal antibodies as well as virus entry inhibitors. In this paper, we describe a mutation in the V2 domain of gp120 that similarly induces a neutralization-sensitive phenotype in an otherwise neutralization-resistant envelope sequence.Previous studies (10, 14, 33, 40, 43, 52, 72, 74) have suggested that sequences in the V2 domain act as the “global regulator of neutralization sensitivity” and confer neutralization resistance by restricting access to epitopes located in the V3 domain, the CD4 binding site, and chemokine receptor binding sites through “conformational masking” of neutralizing epitopes. Deletion of the V2 domain markedly increases neutralization sensitivity (10, 57, 62, 74), and several envelope proteins with V2 domain deletions have been developed as candidate HIV-1 vaccines (5, 42, 61). In this paper, we show that a single substitution of asparagine (N) for aspartic acid (D) at position 179 in the C-terminal portion of the V2 domain (corresponding to position 180 in HXB2 numbering) converts a highly neutralization-resistant virus to a neutralization-sensitive virus with a phenotype similar to that described for V2 domain deletion mutants. Position 179 has recently attracted attention as a critical element of the α4β7 integrin binding site that affects virus tropism to the gut (2). Our results suggest that mutation at position 179 results in a conformational change that increases neutralization sensitivity by exposure of epitopes in both gp120 and gp41 that are normally masked in the trimeric structure of gp160 and thus are unavailable for antibody binding.  相似文献   
174.
We investigated the effects of forest fragmentation on golden-headed lion tamarins (Leontopithecus chrysomelas) by qualitatively and quantitatively characterizing the landscape throughout the species range, conducting surveys, and exploring predictive models of presence and absence. We identified 784 forest patches that varied in size, shape, core area, habitat composition, elevation, and distance to neighboring patches and towns. We conducted 284 interviews with local residents and 133 playback experiments in 98 patches. Results indicated a reduction in the western portions of the former species range. We tested whether L. chrysomelas presence or absence was related to the aforementioned fragmentation indices using Monte Carlo logistic regression techniques. The analysis yielded a majority of iterations with a one-term final model of which Core Area Index (percent of total area that is core) was the only significant type. Model concordance ranged between 65 and 90 percent. Area was highlighted for its potential predictive ability. Although final models for area lacked significance, their failure to reach significance was marginal and we discuss potential confounding factors weakening the term's predictive ability. We conclude that lower Core Area Index scores are useful indicators of forest patches at risk for not supporting L. chrysomelas. Taken together, our analyses of the landscape, survey results, and logistic regression modeling indicated that the L. chrysomelas metapopulation is facing substantial threat. The limited vagility of lion tamarins in nonforest matrix may lead to increasingly smaller and inbred populations subject to significant impact from edge effects and small population size. Local extinction is imminent in many forest patches in the L. chrysomelas range.  相似文献   
175.
176.
We have developed a simple PCR assay protocol for detection of the root-knot nematode (RKN) species Meloidogyne arenaria, M. incognita, and M. javanica extracted from soil. Nematodes are extracted from soil using Baermann funnels and centrifugal flotation. The nematode-containing fraction is then digested with proteinase K, and a PCR assay is carried out with primers specific for this group of RKN and with universal primers spanning the ITS of rRNA genes. The presence of RKN J2 can be detected among large numbers of other plant-parasitic and free-living nematodes. The procedure was tested with several soil types and crops from different locations and was found to be sensitive and accurate. Analysis of unknowns and spiked soil samples indicated that detection sensitivity was the same as or higher than by microscopic examination.  相似文献   
177.
The deposition of beta-amyloid in the brain is a pathological hallmark of Alzheimer disease (AD). Normally, the accumulation of beta-amyloid is prevented in part by the activities of several degradative enzymes, including the endothelin-converting enzymes, neprilysin, insulin-degrading enzyme, and plasmin. Recent reports indicate that another metalloprotease, angiotensin-converting enzyme (ACE), can degrade beta-amyloid in vitro and in cellular overexpression experiments. In addition, ACE gene variants are linked to AD risk in several populations. Angiotensin-converting enzyme, neprilysin and endothelin-converting enzyme function as vasopeptidases and are the targets of drugs designed to treat cardiovascular disorders, and ACE inhibitors are commonly prescribed. We investigated the potential physiological role of ACE in regulating endogenous brain beta-amyloid levels for two reasons: first, to determine whether beta-amyloid degradation might be the mechanism by which ACE is associated with AD, and second, to determine whether ACE inhibitor drugs might block beta-amyloid degradation in the brain and potentially increase the risk for AD. We analyzed beta-amyloid accumulation in brains from ACE-deficient mice and in mice treated with ACE inhibitors and found that ACE deficiency did not alter steady-state beta-amyloid concentration. In contrast, beta-amyloid levels are significantly elevated in endothelin-converting enzyme and neprilysin knock-out mice, and inhibitors of these enzymes cause a rapid increase in beta-amyloid concentration in the brain. The results of these studies do not support a physiological role for ACE in the degradation of beta-amyloid in the brain but confirm roles for endothelin-converting enzyme and neprilysin and indicate that reductions in these enzymes result in additive increases in brain amyloid beta-peptide levels.  相似文献   
178.
A series of structurally novel aminothiazole based small molecule inhibitors of Itk were prepared to elucidate their structure-activity relationships (SARs), selectivity and cell activity in inhibiting IL-2 secretion in a Jurkat T-cell assay. Compound 2 is identified as a potent and selective Itk inhibitor which inhibits anti-TCR antibody induced IL-2 production in mice in vivo.  相似文献   
179.
Giant Amazon river turtles, Podocnemis expansa, are indigenous to the Amazon, Orinoco, and Essequibo River basins, and are distributed across nearly the entire width of the South American continent. Although once common, their large size, high fecundity, and gregarious nesting, made P. expansa especially vulnerable to over-harvesting for eggs and meat. Populations have been severely reduced or extirpated in many areas throughout its range, and the species is now regulated under Appendix II of the Convention on International Trade in Endangered Species. Here, we analyse data from mitochondrial DNA sequence and multiple nuclear microsatellite markers with an array of complementary analytical methods. Results show that concordance from multiple data sets and analyses can provide a strong signal of population genetic structure that can be used to guide management. The general lack of phylogeographic structure but large differences in allele and haplotype frequencies among river basins is consistent with fragmented populations and female natal-river homing. Overall, the DNA data show that P. expansa populations lack a long history of genetic differentiation, but that each major tributary currently forms a semi-isolated reproductive population and should be managed accordingly.  相似文献   
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号