首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   211篇
  免费   17篇
  国内免费   1篇
  2021年   5篇
  2020年   2篇
  2019年   5篇
  2018年   4篇
  2017年   7篇
  2016年   10篇
  2015年   8篇
  2014年   15篇
  2013年   13篇
  2012年   11篇
  2011年   17篇
  2010年   4篇
  2009年   7篇
  2008年   5篇
  2007年   18篇
  2006年   2篇
  2005年   3篇
  2004年   4篇
  2003年   5篇
  2002年   5篇
  2001年   8篇
  2000年   6篇
  1999年   3篇
  1997年   2篇
  1996年   6篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   6篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   3篇
  1979年   3篇
  1977年   1篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1971年   3篇
  1970年   3篇
  1969年   3篇
  1968年   1篇
  1967年   2篇
  1965年   1篇
排序方式: 共有229条查询结果,搜索用时 15 毫秒
41.
Extracellular lipase production byRhizopus arrhizus was increased by mutant selection from 130 to 670 μmol FFA per mL per min using UV radiation and aziridine treatment. The produced lipase was purified 720-fold by ammonium sulfate fractionation and Sephadex G-100 gel filtration. The molar mass of the produced lipase was determined to be approximately 67 kDa which comigrated with bovine serum albumin in both a Sephadex G-100 column and SDS-PAGE.  相似文献   
42.
An extracellular sucrase from the culture filtrate of filamentous basidiomycota Termitomyces clypeatus grown on high sucrose (5%, w/v) was purified by gel filtration chromatography, ion exchange chromatography and HPGPLC. The biochemical properties, molecular weight and conformation of sucrase produced were significantly different from the sucrase earlier purified from sucrose (1%, w/v) medium in the fungus. Purified sucrase was characterized as a low molecular weight protein of 13.5 kDa as approximated by SDS-PAGE and HPGPLC and exhibited predominantly random coil conformation in far-UV CD spectra. The enzyme was optimally active at 47 °C and pH 5.0. Km and catalytic activity of the enzyme for sucrose were found to be 3.5 mM and 1.06 U/mg/mM, respectively. The enzyme was maximally active towards sucrose than to raffinose and sucrase activity was significantly inhibited by bivalent metal ions and reducing group agents. The results indicated that due to changes in aggregation pattern, molecular organization of purified sucrase, produced in high sucrose medium, was altered and was different from the previously reported enzyme. This is the first report of a sucrase of such low size showing activity.  相似文献   
43.
44.
Spinal cord injury (SCI), depending on the severity of injury, leads to neurological dysfunction and paralysis. Methylprednisolone, the only currently available therapy renders limited protection in SCI. Therefore, other therapeutic agents must be tested to maximize neuroprotection and functional recovery. Previous data from our laboratory indicate that estrogen (17β-estradiol) at a high dose may attenuate multiple damaging pathways involved in SCI and improve locomotor outcome. Since use of high dose estrogen may have detrimental side effects and therefore may never be used in the clinic, the current study investigated the efficacy of this steroid hormone at very low doses in SCI. In particular, we tested the impact of dosing (1–10 μg/kg), mode of delivery (intravenous vs. osmotic pump), and delay in estrogen application (15 min–4 h post-SCI) on microgliosis and neuronal death in acute SCI in rats. Treatment with 17β-estradiol (1–10 μg/kg) significantly reduced microglial activation and also attenuated apoptosis of neurons compared to untreated SCI animals. The attenuation of cell death and inflammation by estrogen was observed regardless of mode and time of delivery following injury. These findings suggest estrogen as a potential agent for the treatment of individuals with SCI.  相似文献   
45.
White-nose syndrome (WNS) is an emerging disease causing unprecedented morbidity and mortality among bats in eastern North America. The disease is characterized by cutaneous infection of hibernating bats by the psychrophilic fungus Geomyces destructans. Detection of G. destructans in environments occupied by bats will be critical for WNS surveillance, management and characterization of the fungal lifecycle. We initiated an rRNA gene region-based molecular survey to characterize the distribution of G. destructans in soil samples collected from bat hibernacula in the eastern United States with an existing PCR test. Although this test did not specifically detect G. destructans in soil samples based on a presence/absence metric, it did favor amplification of DNA from putative Geomyces species. Cloning and sequencing of PCR products amplified from 24 soil samples revealed 74 unique sequence variants representing 12 clades. Clones with exact sequence matches to G. destructans were identified in three of 19 soil samples from hibernacula in states where WNS is known to occur. Geomyces destructans was not identified in an additional five samples collected outside the region where WNS has been documented. This study highlights the diversity of putative Geomyces spp. in soil from bat hibernacula and indicates that further research is needed to better define the taxonomy of this genus and to develop enhanced diagnostic tests for rapid and specific detection of G. destructans in environmental samples.  相似文献   
46.
Francisella tularensis is a category A biodefence agent that causes a fatal human disease known as tularaemia. The pathogenicity of F. tularensis depends on its ability to persist inside host immune cells primarily by resisting an attack from host‐generated reactive oxygen and nitrogen species (ROS/RNS). Based on the ability of F. tularensis to resist high ROS/RNS levels, we have hypothesized that additional unknown factors act in conjunction with known antioxidant defences to render ROS resistance. By screening a transposon insertion library of F. tularensis LVS in the presence of hydrogen peroxide, we have identified an oxidant‐sensitive mutant in putative EmrA1 (FTL_0687) secretion protein. The results demonstrate that the emrA1 mutant is highly sensitive to oxidants and several antimicrobial agents, and exhibits diminished intramacrophage growth that can be restored to wild‐type F. tularensis LVS levels by either transcomplementation, inhibition of ROS generation or infection in NADPH oxidase deficient (gp91Phox?/?) macrophages. The emrA1 mutant is attenuated for virulence, which is restored by infection in gp91Phox?/? mice. Further, EmrA1 contributes to oxidative stress resistance by affecting secretion of Francisella antioxidant enzymes SodB and KatG. This study exposes unique links between transporter activity and the antioxidant defence mechanisms of F. tularensis.  相似文献   
47.
Several microRNAs have been implicated in neurogenesis, neuronal differentiation, neurodevelopment, and memory. Development of miRNA-based therapeutics, however, needs tools for effective miRNA modulation, tissue-specific delivery, and in vivo evidence of functional effects following the knockdown of miRNA. Expression of miR-29a is reduced in patients and animal models of several neurodegenerative disorders, including Alzheimer''s disease, Huntington''s disease, and spinocerebellar ataxias. The temporal expression pattern of miR-29b during development also correlates with its protective role in neuronal survival. Here, we report the cellular and behavioral effect of in vivo, brain-specific knockdown of miR-29. We delivered specific anti-miRNAs to the mouse brain using a neurotropic peptide, thus overcoming the blood-brain-barrier and restricting the effect of knockdown to the neuronal cells. Large regions of the hippocampus and cerebellum showed massive cell death, reiterating the role of miR-29 in neuronal survival. The mice showed characteristic features of ataxia, including reduced step length. However, the apoptotic targets of miR-29, such as Puma, Bim, Bak, or Bace1, failed to show expected levels of up-regulation in mice, following knockdown of miR-29. In contrast, another miR-29 target, voltage-dependent anion channel1 (VDAC1), was found to be induced several fold in the hippocampus, cerebellum, and cortex of mice following miRNA knockdown. Partial restoration of apoptosis was achieved by down-regulation of VDAC1 in miR-29 knockdown cells. Our study suggests that regulation of VDAC1 expression by miR-29 is an important determinant of neuronal cell survival in the brain. Loss of miR-29 results in dysregulation of VDAC1, neuronal cell death, and an ataxic phenotype.  相似文献   
48.
49.
4,4'-bis(1-anilino-8-naphthalenesulfonic acid (Bis-ANS), an environment-sensitive fluorescent probe for hydrophobic region of proteins, binds specifically to the C-terminal domain of lambda repressor. The binding is characterized by positive cooperativity, the magnitude of which is dependent on protein concentration in the concentration range where dimeric repressor aggregates to a tetramer. In this range, positive cooperativity becomes more pronounced at higher protein concentrations. This suggests a preferential binding of Bis-ANS to the dimeric form of the repressor. Binding of single operator OR1 to the N-terminal domain of the repressor causes enhancement of fluorescence of the C-terminal domain bound Bis-ANS. The binding of single operator OR1 also leads to quenching of fluorescence of tryptophan residues, all of which are located in the hinge or the C-terminal domain. Thus two different fluorescent probes indicate an operator-induced conformational change which affects the C-terminal domain. The significance of this conformational change with respect to the function of lambda repressor has been discussed.  相似文献   
50.
Steady state metabolic parameters for hybridoma cell line H22 were determined over a wide range of cell densities and specific growth rates in a filtration based homogeneous perfusion reactor. Operating the reactor at perfusion rates of 0.75, 2.0, and 2.9 day(-1)(each at four different specific growth rates), viable cell densities as high as 2 x 10(7) cells/mL were obtained. For the cell line under investigation, the specific monoclonal antibody production rate was found to be a strong function of the viable cell density, increasing with increasing cell density. In contrast, most of the substrate consumption and product formation rates were strong functions of the specific growth rate. Substrate metabolism became more efficient at high cell densities and low specific growth rates. The Specific rates of metabolite formation and the apparent yields of lactate from glucose and ammonia from glutamine decreased at low specific growth rates and high cell densities. While the specific oxygen consumption rate was independent of the specific growth rate and cell density, ATP production was more oxidative at lower specific growth rate and higher cell density. These observed shifts are strong indications of the production potential of high-density perfusion culture. (c) 1995 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号