首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   28篇
  国内免费   1篇
  272篇
  2022年   2篇
  2021年   6篇
  2020年   2篇
  2019年   5篇
  2018年   6篇
  2017年   8篇
  2016年   10篇
  2015年   15篇
  2014年   17篇
  2013年   16篇
  2012年   13篇
  2011年   18篇
  2010年   7篇
  2009年   11篇
  2008年   6篇
  2007年   18篇
  2006年   2篇
  2005年   3篇
  2004年   6篇
  2003年   4篇
  2002年   5篇
  2001年   8篇
  2000年   6篇
  1999年   4篇
  1998年   2篇
  1997年   3篇
  1996年   5篇
  1994年   4篇
  1993年   3篇
  1992年   6篇
  1990年   3篇
  1988年   4篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1979年   3篇
  1977年   3篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1971年   3篇
  1970年   3篇
  1969年   3篇
  1968年   1篇
  1967年   2篇
  1965年   1篇
排序方式: 共有272条查询结果,搜索用时 15 毫秒
201.
Multicatalytic proteinase complex (MPC) was isolated from bovine brain and the susceptibility of myelin basic protein (MBP) and P2 protein of bovine central and peripheral nervous system was examined. SDS-polyacrylamide electrophoretic analysis of purified MPC revealed protein bands of molecular weight ranging from 22–35 kDa. The enzyme is activated by SDS at a concentration less than 0.01%. Upon incubation with MPC, purified MBP and P2 proteins were degraded into smaller fragments. There was a 57% and 100% loss of MBP at 2 and 6 hours of incubation. The P2 protein which is not susceptible to any endogenous non-lysosomal enzyme thus far studied was digested into small peptide fragments only in the presence of SDS (0.01%) and not in its absence. These results indicate that MPC which is active at physiological conditions may have a role in the turnover of myelin proteins and in demyelinating diseases.  相似文献   
202.
The present study was conducted to ascertain the adaptive capability of pigs to different seasons based on changes in serum cortisol and lactate dehydrogenase (LDH) levels, and peripheral blood mononuclear cell (PBMC) heat shock protein 70 (HSP70) mRNA expression. Based on average THI, the seasons were classified as winter (November–February), spring (March–June), and summer (July–October). Hormone cortisol was found to be influenced by season (p < 0.01), age (p < 0.05), and genetics of the animal (p < 0.05). However, level of LDH was not influenced by either of these factors. HSP70 mRNA expression was higher in almost all age groups in crossbred and exotic pigs during summer in comparison to other seasons. Lower HSP70 gene expression was observed in almost all age groups of native pigs in comparison to crossbred and exotic during summer. In conclusion, native pigs were acclimatized for thermal stress in comparison to crossbred and exotic breeds of pigs. Also, the expression pattern of HSP70 gene is breed-specific, most likely due to variations in thermal tolerance and adaptation to different environmental conditions. Both serum cortisol and HSP70 gene may act as reliable biological markers for assessing the adaptive capabilities of pigs to different seasons.  相似文献   
203.
204.
205.
Glioblastoma is the deadliest brain tumor in humans. Current therapies are mostly ineffective and new agents need to be explored for controlling this devastating disease. Inositol hexaphosphate (IP6) is a phytochemical that is widely found in corns, cereals, nuts, and high fiber-content foods. Previous studies demonstrated anti-cancer properties of IP6 in several in vitro and in vivo tumor models. However, therapeutic efficacy of IP6 has not yet been evaluated in glioblastoma. Here, we explored the molecular mechanism of action of IP6 in human malignant glioblastoma T98G cells. The viability of T98G cells decreased following treatment with increasing doses of IP6. T98G cells exposed to 0.25, 0.5, and 1 mM IP6 for 24 h showed morphological and biochemical features of apoptosis. Western blotting indicated changes in expression of Bax and Bcl-2 proteins resulting in an increase in Bax:Bcl-2 ratio and upregulation of cytosolic levels of cytochrome c and Smac/Diablo, suggesting involvement of mitochondria-dependent caspase cascade in apoptosis. IP6 downregulated cell survival factors such as baculovirus inhibitor-of-apoptosis repeat containing-2 (BIRC-2) protein and telomerase to promote apoptosis. Upregulation of calpain and caspase-9 occurred in course of apoptosis. Increased activities of calpain and caspase-3 cleaved 270 kD α-spectrin at specific sites generating 145 kD spectrin break down product (SBDP) and 120 kD SBDP, respectively. Increased caspase-3 activity also cleaved inhibitor of caspase-3-activated DNase and poly(ADP-ribose) polymerase. Collectively, our results demonstrated that IP6 down regulated the survival factors BIRC-2 and telomerase and upregulated calpain and caspase-3 activities for apoptosis in T98G cells. Special issue in honor of Naren Banik.  相似文献   
206.
Multiple sclerosis (MS) is a demyelinating disorder characterized by massive neurodegeneration and profound axonal loss. Since myelin is enriched with sphingolipids and some of them display toxicity, biological function of sphingolipids in demyelination has been investigated in MS brain tissues. An elevation of sphingosine with a decrease in monoglycosylceramide and psychosine (myelin markers) was observed in MS white matter and plaque compared to normal brain tissue. This indicated that sphingosine toxicity might mediate oligodendrocyte degeneration. To explain the source of sphingosine accumulation, total sphingolipid profile was investigated in Lewis rats after inducing experimental autoimmune encephalomyelitis (EAE) and also in human oligodendrocytes in culture. An intermittent increase in ceramide followed by sphingosine accumulation in EAE spinal cord along with a stimulation of serine-palmitoyltransferase (SPT) activity was observed. Apoptosis was identified in the lumbar spinal cord, the most prominent demyelinating area, in the EAE rats. TNFα and IFNγ stimulation of oligodendrocytes in culture also led to an accumulation of ceramide with an elevation of sphingosine. Ceramide elevation was drastically blocked by myriocin, an inhibitor of SPT, and also by FTY720. Myriocin treatment also protected oligodendrocytes from cytokine mediated apoptosis or programmed cell death. Hence, we propose that sphingosine toxicity may contribute to demyelination in both EAE and MS, and the intermittent ceramide accumulation in EAE may, at least partly, be mediated via SPT activation, which is a novel observation that has not been previously reported.  相似文献   
207.
Spinal cord injury (SCI) is a complex debilitating condition leading to permanent life-long neurological deficits. The complexity of SCI suggests that a concerted multi-targeted therapeutic approach is warranted to optimally improve function. Damage to spinal cord is complicated by an increased detrimental response from secondary injury factors mediated by activated glial cells and infiltrating macrophages. While elevation of enolase especially neuron specific enolase (NSE) in glial and neuronal cells is believed to trigger inflammatory cascades in acute SCI, alteration of NSE and its subsequent effects in acute SCI remains unknown. This study measured NSE expression levels and key inflammatory mediators after acute SCI and investigated the role of ENOblock, a novel small molecule inhibitor of enolase, in a male Sprague–Dawley (SD) rat SCI model. Serum NSE levels as well as cytokines/chemokines and metabolic factors were evaluated in injured animals following treatment with vehicle alone or ENOblock using Discovery assay. Spinal cord samples were also analyzed for NSE and MMPs 2 and 9 as well as glial markers by Western blotting. The results indicated a significant decrease in serum inflammatory cytokines/chemokines and NSE, alterations of metabolic factors and expression of MMPs in spinal cord tissues after treatment with ENOblock (100 µg/kg, twice). These results support the hypothesis that activation of glial cells and inflammation status can be modulated by regulation of NSE expression and activity. Analysis of SCI tissue samples by immunohistochemistry confirmed that ENOblock decreased gliosis which may have occurred through reduction of elevated NSE in rats. Overall, elevation of NSE is deleterious as it promotes extracellular degradation and production of inflammatory cytokines/chemokines and metabolic factors which activates glia and damages neurons. Thus, reduction of NSE by ENOblock may have potential therapeutic implications in acute SCI.  相似文献   
208.
We surveyed nucleotide sequence variation at glucose dehydrogenase (Gld), in a region of low recombination on chromosome 3R, from a population sample of Drosophila simulans. The levels of nucleotide variation were surprisingly high. There was no departure from the expectation of a neutral model for the level of polymorphism, indicating no evidence of a selective sweep in this region. There was a significant deficiency of singleton polymorphisms according to the Fu and Li test, although Tajima and Hudson, Kreitman, and Aguade (HKA) tests do not provide evidence of a significant elevation of variation due to balancing selection. Genetic map data for the D. simulans third chromosome were used to calculate expected values of pi for Gld under a current model of background selection, varying the values for the parameter sh (selection coefficient against deleterious mutations). We show that the recombinational landscape of D. simulans is sufficiently different from that of D. melanogaster that we expect higher variation under the background selection model, even when effective population sizes are assumed to be equal. The data for Gld were tested against the predictions using computer simulations of the distribution of the number of segregating sites conditioned on pi. Background selection alone can explain our observations as long as sh is larger than 0.005 and species-level effective population size is assumed to be several- fold larger than in D. melanogaster. Alternatively, the deleterious mutation rate may be smaller in D. simulans, or balancing selection may be acting nearby, thereby reducing the effect of background selection.   相似文献   
209.
Exopolysaccharide of the gellan family: prospects and potential   总被引:8,自引:0,他引:8  
The use of microbial polysaccharides in the food, pharmaceutical and chemical industries has increased steadily during the past decade. The biopolymer gellan is a more recent addition to the family of microbial polysaccharides that is gaining much importance due to its novel property of forming thermo-reversible gels when heated and cooled. It is produced and marketed by some companies of Europe, USA, etc under trade names such as Gelrite, Phytagel and Kelcogel. It has applications in diverse fields in the food, pharmaceutical and many other industries. Further research and development in biopolymer technology is expected to expand its use. This article presents a critical review of the available published information on the gellan exopolysaccharide synthesized by Pseudomonas species. In particular information on its structure, physico-chemical properties and the rheology of its solutions etc. is critically assessed. Emphasis has also been paid to characterization of gellan. A brief historical background of the polymer and the biochemical and physiological characteristics of several different existing bacterial isolates which secrete gellan and related polysaccharides are discussed. An attempt has also been made to review the potential and future prospects, highlighting some novel techniques adopted to overcome the mass transfer problems associated with the fermentative production of gellan gum. The efficient downstream processes used for obtaining purified gellan are also highlighted. Attention has also been drawn to the problem associated with the fermentation processes due to the highly viscous nature of gellan gum and effect of different impeller systems on gellan fermentation kinetics and rheological properties.  相似文献   
210.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号