首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   241篇
  免费   28篇
  国内免费   1篇
  2021年   6篇
  2020年   2篇
  2019年   5篇
  2018年   6篇
  2017年   8篇
  2016年   10篇
  2015年   15篇
  2014年   17篇
  2013年   16篇
  2012年   13篇
  2011年   18篇
  2010年   7篇
  2009年   11篇
  2008年   6篇
  2007年   18篇
  2006年   2篇
  2005年   3篇
  2004年   6篇
  2003年   4篇
  2002年   5篇
  2001年   8篇
  2000年   6篇
  1999年   4篇
  1998年   2篇
  1997年   3篇
  1996年   5篇
  1994年   4篇
  1993年   3篇
  1992年   6篇
  1990年   3篇
  1988年   4篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1979年   3篇
  1977年   3篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1971年   3篇
  1970年   3篇
  1969年   3篇
  1968年   1篇
  1967年   2篇
  1965年   1篇
排序方式: 共有270条查询结果,搜索用时 31 毫秒
171.
The anti-neoplastic drug taxol binds to β-tubulin to prevent tumor cell division, promoting cell death. However, high dose taxol treatment may induce cell death in normal cells too. The anti-apoptotic molecule Bcl-2 is upregulated in many cancer cells to protect them from apoptosis. In the current study, we knocked down Bcl-2 expression using cognate siRNA during low-dose taxol treatment to induce apoptosis in two human glioblastoma U138MG and U251MG cell lines. The cells were treated with either 100 nM taxol or 100 nM Bcl-2 siRNA or both for 72 h. Immunofluorescent stainings for calpain and active caspase-3 showed increases in expression and co-localization of these proteases in apoptotic cells. Fluorometric assays demonstrated increases in intracellular free [Ca2+], calpain, and caspase-3 indicating augmentation of apoptosis. Western blotting demonstrated dramatic increases in the levels of Bax, Bak, tBid, active caspases, DNA fragmentation factor-40 (DFF40), cleaved fragments of lamin, fodrin, and poly(ADP-ribose) polymerase (PARP) during apoptosis. The events related to apoptosis were prominent more in combination therapy than in either treatment alone. Our current study demonstrated that Bcl-2 siRNA significantly augmented taxol mediated apoptosis in different human glioblastoma cells through induction of calpain and caspase proteolytic activities. Thus, combination of taxol and Bcl-2 siRNA offers a novel therapeutic strategy for controlling the malignant growth of human glioblastoma cells. Special issue article in honor of Dr. George DeVries.  相似文献   
172.
The forelimb digital flexors of the horse display remarkable diversity in muscle architecture despite each muscle-tendon unit having a similar mechanical advantage across the fetlock joint. We focus on two distinct muscles of the digital flexor system: short compartment deep digital flexor (DDF(sc)) and the superficial digital flexor (SDF). The objectives were to investigate force-length behavior and work performance of these two muscles in vivo during locomotion, and to determine how muscle architecture contributes to in vivo function in this system. We directly recorded muscle force (via tendon strain gauges) and muscle fascicle length (via sonomicrometry crystals) as horses walked (1.7 m s(-1)), trotted (4.1 m s(-1)) and cantered (7.0 m s(-1)) on a motorized treadmill. Over the range of gaits and speeds, DDF(sc) fascicles shortened while producing relatively low force, generating modest positive net work. In contrast, SDF fascicles initially shortened, then lengthened while producing high force, resulting in substantial negative net work. These findings suggest the long fibered, unipennate DDF(sc) supplements mechanical work during running, whereas the short fibered, multipennate SDF is specialized for economical high force and enhanced elastic energy storage. Apparent in vivo functions match well with the distinct architectural features of each muscle.  相似文献   
173.
The presence of sugars causes significant deviation from the actual absorbance of proteins in the Bradford protein assay. In these studies, polysaccharides and disaccharides at milligram levels mimicked proteins in microgram equivalents. Monosaccharides, which individually did not show any absorbance, interfered significantly by sequestering the dye species. The studies demonstrated that in a mixture of sugars and proteins, sugar interference was much higher than expected from sugar molecules’ individual contribution. Estimated protein values were increased 2 to 4 times after precipitation from fungal culture broths. Thus, in carbohydrate-rich samples, protein concentrations should be ascertained by precipitation from crude extracts and resolubilization in a noninterfering buffer.  相似文献   
174.
Lindner DL  Banik MT 《Mycologia》2008,100(3):417-430
Phylogenetic relationships were investigated among North American species of Laetiporus, Leptoporus, Phaeolus, Pycnoporellus and Wolfiporia using ITS, nuclear large subunit and mitochondrial small subunit rDNA sequences. Members of these genera have poroid hymenophores, simple septate hyphae and cause brown rots in a variety of substrates. Analyses indicate that Laetiporus and Wolfiporia are not monophyletic. All North American Laetiporus species formed a well supported monophyletic group (the "core Laetiporus clade" or Laetiporus s.s.) with the exception of L. persicinus, which showed little affinity for any genus for which sequence data are available. Based on data from GenBank, the southern hemisphere species L. portentosus also fell well outside the core Laetiporus clade. Wolfiporia dilatohypha was found to represent a sister group to the core Laetiporus clade. Isolates of Phaeolus, Pycnoporellus and members of the core Laetiporus clade all fell within the Antrodia clade of polypores, while Leptoporus mollis and Laetiporus portentosus fell within the phlebioid clade of polypores. Wolfiporia cocos isolates also fell in the Antrodia clade, in contrast to previous studies that placed W. cocos in the core polyporoid clade. ITS analyses resolved eight clades within Laetiporus s.s., three of which might represent undescribed species. A combined analysis using the three DNA regions resolved five major clades within Laetiporus s.s.: a clade containing conifer-inhabiting species ("Conifericola clade"), a clade containing L. cincinnatus ("Cincinnatus clade"), a clade containing L. sulphureus s.s. isolates with yellow pores ("Sulphureus clade I"), a clade containing L. sulphureus s.s. isolates with white pores ("Sulphureus clade II") and a clade containing L. gilbertsonii and unidentified isolates from the Caribbean ("Gilbertsonii clade"). Although there is strong support for groups within the core Laetiporus clade, relationships among these groups remain poorly resolved.  相似文献   
175.

Background

This study examines the effects of adding gelatin to a starch-chitosan composite foam, focusing on the altered structural and biological properties. The compressive modulus of foams containing different gelatin concentrations was tested in dry, wet, and lyophilized states. MC3T3 mouse osteoblast cells were used to test the composite’s ability to support cell growth. The stability of the foams in α-MEM culture media with and without cells was also examined.

Results

It was found that for dry foams, the compressive modulus increased with increasing gelatin content. For foams tested in wet and lyophilized states, the compressive modulus peaked at a gelatin concentration of 2.5% and 5%, respectively. The growth of MC3T3 mouse osteoblast cells was tested on the foams with different gelatin concentrations. The addition of gelatin had a positive effect on the cell growth and proliferation.

Conclusion

The composite foam containing gelatin improved cell growth and is only dissolved by the growing cells at a rate influenced by the initial concentration of gelatin added to the foam.
  相似文献   
176.
Weber-Ban E  Hur O  Bagwell C  Banik U  Yang LH  Miles EW  Dunn MF 《Biochemistry》2001,40(12):3497-3511
The tryptophan synthase bienzyme complex is the most extensively documented example of substrate channeling in which the oligomeric unit has been described at near atomic resolution. Transfer of the common metabolite, indole, between the alpha- and the beta-sites occurs by diffusion along a 25-A-long interconnecting tunnel within each alphabeta-dimeric unit of the alpha(2)beta(2) oligomer. The control of metabolite transfer involves allosteric interactions that trigger the switching of alphabeta-dimeric units between open and closed conformations and between catalytic states of low and high activity. This allosteric signaling is triggered by covalent transformations at the beta-site and ligand binding to the alpha-site. The signals are transmitted between sites via a scaffolding of structural elements that includes a monovalent cation (MVC) binding site and salt bridging interactions of betaLys 167 with betaAsp 305 or alphaAsp 56. Through the combined strategies of site-directed mutations of these amino acid residues and cation substitutions at the MVC site, this work examines the interrelationship of the MVC site and the alternative salt bridges formed between Lys beta167 with Asp beta305 or Asp alpha56 to the regulation of channeling. These experiments show that both the binding of a MVC and the formation of the Lys beta167-Asp alpha56 salt bridge are important to the transmission of allosteric signals between the sites, whereas, the salt bridge between betaK167 and betaD305 appears to be only of minor significance to catalysis and allosteric regulation. The mechanistic implications of these findings both for substrate channeling and for catalysis are discussed.  相似文献   
177.
Most tumor cells depend upon activation of the ribonucleoprotein enzyme telomerase for telomere maintenance and continual proliferation. The catalytic activity of this enzyme can be reconstituted in vitro with the RNA (hTR) and catalytic (hTERT) subunits. However, catalytic activity alone is insufficient for the full in vivo function of the enzyme. In addition, the enzyme must localize to the nucleus, recognize chromosome ends, and orchestrate telomere elongation in a highly regulated fashion. To identify domains of hTERT involved in these biological functions, we introduced a panel of 90 N-terminal hTERT substitution mutants into telomerase-negative cells and assayed the resulting cells for catalytic activity and, as a marker of in vivo function, for cellular proliferation. We found four domains to be essential for in vitro and in vivo enzyme activity, two of which were required for hTR binding. These domains map to regions defined by sequence alignments and mutational analysis in yeast, indicating that the N terminus has also been functionally conserved throughout evolution. Additionally, we discovered a novel domain, DAT, that "dissociates activities of telomerase," where mutations left the enzyme catalytically active, but was unable to function in vivo. Since mutations in this domain had no measurable effect on hTERT homomultimerization, hTR binding, or nuclear targeting, we propose that this domain is involved in other aspects of in vivo telomere elongation. The discovery of these domains provides the first step in dissecting the biological functions of human telomerase, with the ultimate goal of targeting this enzyme for the treatment of human cancers.  相似文献   
178.
Activity of endo-beta-mannanase increases during ripening of tomato (Lycopersicon esculentum Mill.) fruit of the cultivar Trust. beta-Mannoside mannohydrolase is also present during ripening, but its pattern of activity is different from that of endo-beta-mannanase. The increase in endo-beta-mannanase activity is greatest in the skin, and less in the outer and inner pericarp regions. This enzyme is probably bound to the walls of the outermost cell layers of the fruit during ripening, and it requires a high-salt buffer for effective extraction. The enzyme protein, as detected immunologically on Western blots, is present during the early stages of ripening, before any enzyme activity is detectable. The mRNA for the enzyme is also present at these stages; endo-beta-mannanase may be produced and sequestered in a mature-sized inactive form during early ripening. Most non-ripening mutants of tomato exhibit reduced softening and lower endo-beta-mannanase activity, but a cause-and-effect relationship between the enzyme and ripening is unlikely because some cultivars which ripen normally do not exhibit any endo-beta-mannanase activity in the fruit.  相似文献   
179.
Exopolysaccharide of the gellan family: prospects and potential   总被引:8,自引:0,他引:8  
The use of microbial polysaccharides in the food, pharmaceutical and chemical industries has increased steadily during the past decade. The biopolymer gellan is a more recent addition to the family of microbial polysaccharides that is gaining much importance due to its novel property of forming thermo-reversible gels when heated and cooled. It is produced and marketed by some companies of Europe, USA, etc under trade names such as Gelrite, Phytagel and Kelcogel. It has applications in diverse fields in the food, pharmaceutical and many other industries. Further research and development in biopolymer technology is expected to expand its use. This article presents a critical review of the available published information on the gellan exopolysaccharide synthesized by Pseudomonas species. In particular information on its structure, physico-chemical properties and the rheology of its solutions etc. is critically assessed. Emphasis has also been paid to characterization of gellan. A brief historical background of the polymer and the biochemical and physiological characteristics of several different existing bacterial isolates which secrete gellan and related polysaccharides are discussed. An attempt has also been made to review the potential and future prospects, highlighting some novel techniques adopted to overcome the mass transfer problems associated with the fermentative production of gellan gum. The efficient downstream processes used for obtaining purified gellan are also highlighted. Attention has also been drawn to the problem associated with the fermentation processes due to the highly viscous nature of gellan gum and effect of different impeller systems on gellan fermentation kinetics and rheological properties.  相似文献   
180.
Voltage-dependent calcium channels from a rat brain membrane preparation ("synaptosomes") were incorporated into planar lipid bilayers. The effects of calcium, barium, strontium, manganese, and cadmium ions on the amplitudes and kinetics of single channel currents were examined. The order of single channel conductances was gBa greater than gSr greater than gMn, which was the inverse of the order of the mean channel open times: TMn greater than TCa = TSr greater than TBa. In contrast, the identity of the charge carrier had little or no effect on the mean closed times of the channel. Manganese, in the absence of other permeant ions, can pass through single channels (gMn = 4 pS). However, when added to a solution that contained another type of permeant divalent cation, manganese reduced the single channel current in a voltage-dependent manner. Cadmium, a potent blocker of macroscopic "ensemble" calcium currents in many preparations, reduced the current through an open channel in a manner consistent with Cd ions both not being measurably permeant and interacting with a single site. The permeant ions competed with cadmium for this site with the following order: Mn greater than Sr = Ca greater than Ba. These results are consistent with the existence of no less than one divalent cation binding site in the channel that regulates ion permeation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号