首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   45篇
  2023年   2篇
  2022年   3篇
  2021年   5篇
  2020年   3篇
  2019年   3篇
  2017年   1篇
  2016年   4篇
  2015年   13篇
  2014年   6篇
  2013年   17篇
  2012年   20篇
  2011年   14篇
  2010年   9篇
  2009年   7篇
  2008年   8篇
  2007年   7篇
  2006年   10篇
  2005年   9篇
  2004年   6篇
  2003年   12篇
  2001年   11篇
  2000年   7篇
  1999年   4篇
  1998年   5篇
  1997年   2篇
  1995年   4篇
  1994年   3篇
  1992年   3篇
  1991年   5篇
  1990年   2篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1960年   1篇
  1954年   1篇
  1952年   2篇
  1946年   1篇
  1943年   1篇
  1941年   1篇
排序方式: 共有229条查询结果,搜索用时 31 毫秒
91.
Sphingomyelinases C are enzymes that catalyze the hydrolysis of sphingomyelin in biological membranes to ceramide and phosphorylcholine. Various pathogenic bacteria produce secreted neutral sphingomyelinases C that act as membrane-damaging virulence factors. Mammalian neutral sphingomyelinases C, which display sequence homology to the bacterial enzymes, are involved in sphingolipid metabolism and signaling. This article describes the first structure to be determined for a member of the neutral sphingomyelinase C family, SmcL, from the intracellular bacterial pathogen Listeria ivanovii. The structure has been refined to 1.9-A resolution with phases derived by single isomorphous replacement with anomalous scattering techniques from a single iridium derivative. SmcL adopts a DNase I-like fold, and is the first member of this protein superfamily to have its structure determined that acts as a phospholipase. The structure reveals several unique features that adapt the protein to its phospholipid substrate. These include large hydrophobic beta-hairpin and hydrophobic loops surrounding the active site that may bind and penetrate the lipid bilayer to position sphingomyelin in a catalytically competent position. The structure also provides insight into the proposed general base/acid catalytic mechanism, in which His-325 and His-185 play key roles.  相似文献   
92.
Herpes simplex virus (HSV) adsorption to host cells is mediated, at least in part, by the interaction of viral glycoproteins with cell surface glycosaminoglycans such as heparan sulfate and chondroitin sulfate. To investigate the contribution of various cell surface components in the infection pathway, we isolated a mutant cell line, sog9, which is unable to synthesize glycosaminoglycans (B. W. Banfield, Y. Leduc, L. Esford, K. Schubert, and F. Tufaro, J. Virol. 69:3290-3298, 1995). Although HSV-1 and HSV-2 infection of sog9 cells is diminished, the cells are still infected at about 0.5% efficiency, which suggests that these cells normally express at least one nonglycosaminoglycan receptor. In this report, we used sog9 cells to test whether glycosaminoglycan analogs, such as dextran sulfate (DS), could functionally substitute for cellular glycosaminoglycans to initiate HSV infection. We show that high-molecular-weight DS added either prior to or during inoculation stimulated HSV-1 but not HSV-2 infection by up to 35-fold; DS added after viral adsorption had no effect on infection efficiency. Moreover, DS stimulated HSV-1 infection at 4 degrees C, indicating that this compound impinged on an early, energy-independent step in infection. Using radiolabeled virus, we showed that HSV-1 is more efficient than HSV-2 in adsorbing to DS immobilized on microtiter wells. This raised the possibility that only HSV-1 could engage additional receptors to initiate infection in the presence of DS. To determine which viral component(s) facilitated DS stimulation, a panel of intertypic recombinants and deletion mutant viruses was investigated. These assays showed that DS stimulation of infection is mediated primarily by gB-1. Thus, this study provides direct evidence that a principal role for cell surface glycosaminoglycans in HSV infection is to provide an efficient matrix for virus adsorption. Moreover, by using DS as an alternative adsorption matrix (a trans receptor), we uncovered a functional, type-specific interaction of HSV-1 with a cell surface receptor.  相似文献   
93.
Influx of 45Ca into internodal cells of Chara corallina has been measured, using short uptake times, and a wash in ice-cold La3+-containing pondwater after the labelling period to overcome the difficulty of distinguishing extracellular tracer from that in the cell. Over 5–15 min the uptake was linear with time, through the origin. The basal influx from 0.1 mM Ca2+ externally was 0.25–0.5 pmol·cm-2·s-1, but some batches of cells showed higher fluxes. The influx was markedly stimulated by depolarisation in pondwater containing 20 mM K+. In cells in which the control flux was less than about 0.5 pmol·cm-2·s-1 there was no effect of 50 M nifedipine. In cells in which the control flux was greater than about 0.5 pmol·cm-2·s-1 (whether by natural variability, pretreatment, or by depolarisation in 20 mM K+), the flux was reduced by 50 M nifedipine to a value in the range 0.25–0.59 pmol·cm-2·s-1. It is suggested that two types of Ca-channel are probably involved, both opening on depolarisation, but only one sensitive to nifedipine. The flux was inhibited by 10 M BAY K 8644, which in animal cells more commonly opens Ca-channels. The apparent influx measured over long uptake times was much reduced, and the kinetics indicated filling a pool of apparent size about 1.45 nmol·cm-2 with a halftime of about 38 min, probably representing cytoplasmic stores. It is argued that in spite of the very small pool of (free+bound) cytoplasmic Ca2+ the measured influx is a reasonable estimate of the influx at the plasmalemma.Abbreviations 0.4K-APW6 artificial pondwater, pH 6, containing 0.4 mM KCl - 20 K-APW6 artificial pondwater, pH 6, containing 20 mM KCl - Cao external Ca2+  相似文献   
94.
Streptococcus pyogenes and other Gram‐positive bacterial pathogens present long macromolecular filaments known as pili on their surface that mediate adhesion and colonization. These pili are covalent polymers, assembled by sortases. Typically, they comprise a putative adhesin at their tip, a backbone subunit present in multiple copies and a basal subunit that is covalently anchored to the peptidoglycan layer of the cell surface. The crystal structures of pilin subunits revealed the presence of unusual covalent linkages in these proteins, including intramolecular isopeptide and internal thioester bonds. The intramolecular isopeptide bonds in backbone pilins are important for protein stability. Here, using both the wild‐type protein and a set of mutants, we assessed the proteolytic and thermal stability of the S. pyogenes pilus tip adhesin Spy0125, in the presence and absence of its intramolecular isopeptide and internal thioester bonds. We also determined a crystal structure of the internal thioester bond variant Spy0125Cys426Ala. We find that mutations in the intramolecular isopeptide bonds compromise the stability of Spy0125. Using limited proteolysis and thermal denaturation assays, we could separate the contribution of each intramolecular isopeptide bond to Spy0125 stability. In contrast, mutation in the internal thioester bond had a lesser effect on protein stability and the crystal structure is essentially identical to wild type. This work suggests that the internal thioester in Spy0125, although having a minor contributory role, is not required for protein stability and must have a different primary function, most likely mediating a covalent interaction with host cell ligands. Proteins 2014; 82:517–527. © 2013 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.  相似文献   
95.
We analyzed near-complete population (composite) genomic sequences for coexisting acidophilic iron-oxidizing Leptospirillum group II and III bacteria (phylum Nitrospirae) and an extrachromosomal plasmid from a Richmond Mine, Iron Mountain, CA, acid mine drainage biofilm. Community proteomic analysis of the genomically characterized sample and two other biofilms identified 64.6% and 44.9% of the predicted proteins of Leptospirillum groups II and III, respectively, and 20% of the predicted plasmid proteins. The bacteria share 92% 16S rRNA gene sequence identity and >60% of their genes, including integrated plasmid-like regions. The extrachromosomal plasmid carries conjugation genes with detectable sequence similarity to genes in the integrated conjugative plasmid, but only those on the extrachromosomal element were identified by proteomics. Both bacterial groups have genes for community-essential functions, including carbon fixation and biosynthesis of vitamins, fatty acids, and biopolymers (including cellulose); proteomic analyses reveal these activities. Both Leptospirillum types have multiple pathways for osmotic protection. Although both are motile, signal transduction and methyl-accepting chemotaxis proteins are more abundant in Leptospirillum group III, consistent with its distribution in gradients within biofilms. Interestingly, Leptospirillum group II uses a methyl-dependent and Leptospirillum group III a methyl-independent response pathway. Although only Leptospirillum group III can fix nitrogen, these proteins were not identified by proteomics. The abundances of core proteins are similar in all communities, but the abundance levels of unique and shared proteins of unknown function vary. Some proteins unique to one organism were highly expressed and may be key to the functional and ecological differentiation of Leptospirillum groups II and III.To understand how microorganisms contribute to biogeochemical cycling, it is necessary to determine the roles of uncultivated as well as cultivated groups and to establish how these roles vary during ecological succession and when environmental conditions change. Shotgun genomic sequencing (metagenomics) has opened new opportunities for culture-independent studies of microbial communities. Examples include investigations of acid mine drainage (AMD) biofilm communities (4, 43, 75), symbiosis in a marine worm involving sulfur-oxidizing and sulfate-reducing bacteria (85), and enhanced biological phosphorous removal by sludge communities (32). From these genomic data sets, it has been possible to reconstruct aspects of the metabolism of individual organisms (32) and coexisting community members (29, 75) and to identify which organisms contribute community-essential functions (75). An interesting question relates to how differences in metabolic potential between organisms from the same lineage allow them to occupy distinct niches. Identification of potentially adaptive traits in closely related organisms is also important from an evolutionary perspective.Genomic data do not reveal how organisms alter their metabolisms in response to the presence of other organisms or environmental conditions. Proteomics methods for analysis of metabolic responses of isolates (16, 17, 42, 80, 81) have been extended to analyze the functioning of the dominant members of natural consortia (56, 69), with strain-level resolution (43, 82). In these studies, peptides are separated by liquid chromatography (LC) and identified by tandem mass spectrometry (MS-MS) through reference to appropriate genomic databases. Proteomic analysis is possible even if the genome sequences are not identical to those of the organisms present (24); however, missing sequence information reduces the resolution of such proteogenomic studies.Due to dominance by a few organism types, chemoautotrophic microbial AMD biofilms from Richmond Mine, Iron Mountain, CA, are tractable model systems used to develop cultivation-independent metagenomic and proteogenomic methods for analysis of community structure, function, and ecology (13). Acidophilic Leptospirillum bacteria dominate this AMD system (15), other AMD systems (54), and bioleaching systems used for recovery of metals (19, 53, 86). These bacteria play pivotal roles in sulfide mineral dissolution because they are iron oxidizers (53, 75), and ferric iron drives sulfide oxidation, leading to formation of metal-rich sulfuric acid solutions. According to a recent microscopy-based study (83), Leptospirillum group II are the first colonists in AMD biofilm communities whereas Leptospirillum group III generally appear later, sometimes partitioned within biofilm interiors. Because only Leptospirillum group III appear to be able to fix nitrogen, they may be keystone species in AMD ecosystems (75). This observation enabled the isolation of one representative, “Leptospirillum ferrodiazotrophum” (76). In prior work, we reported near-complete genome sequences of two Leptospirillum group II types (43, 65), but detailed functional annotations and metabolic analyses have not been published. Genomic data have been used to explore the metabolism of Leptospirillum bacteria in one biofilm community (56), but proteomic and genomic analyses of the same biofilm community have not been performed.Here, we report a near-complete genomic sequence for Leptospirillum group III, derived from a biofilm obtained from the UBA site within the Richmond Mine, Iron Mountain, CA; a detailed functional annotation of the genomes of Leptospirillum groups II and III; and a genomic and proteomic comparison of them. In addition, we report the sequence of an extrachromosomal plasmid associated with these organisms. This study represents the first comprehensive genomics-based analysis of the metabolism of bacteria in the Nitrospirae phylum and the first environmental community proteogenomic study where the genomic and proteomic data were derived from the same sample. We compared the proteomic profiles of three different biofilm communities to evaluate the importance of shared and unique genes and pathways in environmental adaptation.  相似文献   
96.
Analyses of ecological and evolutionary processes that shape microbial consortia are facilitated by comprehensive studies of ecosystems with low species richness. In the current study we evaluated the role of recombination in altering the fitness of chemoautotrophic bacteria in their natural environment. Proteomics-inferred genome typing (PIGT) was used to genotype the dominant Leptospirillum group II populations in 27 biofilms sampled from six locations in the Richmond Mine acid mine drainage system (Iron Mountain, CA) over a 4-year period. We observed six distinct genotypes that are recombinants comprised of segments from two 'parental' genotypes. Community genomic analyses revealed additional low abundance recombinant variants. The dominance of some genotypes despite a larger available genome pool, and patterns of spatiotemporal distribution within the ecosystem, indicate selection for distinct recombinants. Genes involved in motility, signal transduction and transport were over-represented in the tens to hundreds of kilobase recombinant blocks, whereas core metabolic functions were significantly under-represented. Our findings demonstrate the power of PIGT and reveal that recombination is a mechanism for fine-scale adaptation in this system.  相似文献   
97.

Background

We previously identified an association between a mismatch repair gene, MLH1, promoter SNP (rs1800734) and microsatellite unstable (MSI-H) colorectal cancers (CRCs) in two samples. The current study expanded on this finding as we explored the genetic basis of DNA methylation in this region of chromosome 3. We hypothesized that specific polymorphisms in the MLH1 gene region predispose it to DNA methylation, resulting in the loss of MLH1 gene expression, mismatch-repair function, and consequently to genome-wide microsatellite instability.

Methodology/Principal Findings

We first tested our hypothesis in one sample from Ontario (901 cases, 1,097 controls) and replicated major findings in two additional samples from Newfoundland and Labrador (479 cases, 336 controls) and from Seattle (591 cases, 629 controls). Logistic regression was used to test for association between SNPs in the region of MLH1 and CRC, MSI-H CRC, MLH1 gene expression in CRC, and DNA methylation in CRC. The association between rs1800734 and MSI-H CRCs, previously reported in Ontario and Newfoundland, was replicated in the Seattle sample. Two additional SNPs, in strong linkage disequilibrium with rs1800734, showed strong associations with MLH1 promoter methylation, loss of MLH1 protein, and MSI-H CRC in all three samples. The logistic regression model of MSI-H CRC that included MLH1-promoter-methylation status and MLH1 immunohisotchemistry status fit most parsimoniously in all three samples combined. When rs1800734 was added to this model, its effect was not statistically significant (P-value  = 0.72 vs. 2.3×10−4 when the SNP was examined alone).

Conclusions/Significance

The observed association of rs1800734 with MSI-H CRC occurs through its effect on the MLH1 promoter methylation, MLH1 IHC deficiency, or both.  相似文献   
98.
Using nuclear magnetic resonance spectroscopy, we establish that the N-terminal domain of the yeast vacuolar R-SNARE Nyv1p adopts a longin-like fold similar to those of Sec22b and Ykt6p. Nyv1p is sorted to the limiting membrane of the vacuole via the adaptor protein (AP)3 adaptin pathway, and we show that its longin domain is sufficient to direct transport to this location. In contrast, we found that the longin domains of Sec22p and Ykt6p were not sufficient to direct their localization. A YXX phi-like adaptin-dependent sorting signal (Y31GTI34) unique to the longin domain of Nyv1p mediates interactions with the AP3 complex in vivo and in vitro. We show that amino acid substitutions to Y31GTI34 (Y31Q;I34Q) resulted in mislocalization of Nyv1p as well as reduced binding of the mutant protein to the AP3 complex. Although the sorting of Nyv1p to the limiting membrane of the vacuole is dependent upon the Y31GTI34 motif, and Y31 in particular, our findings with structure-based amino acid substitutions in the mu chain (Apm3p) of yeast AP3 suggest a mechanistically distinct role for this subunit in the recognition of YXX phi-like sorting signals.  相似文献   
99.
Microbial populations inhabiting a natural hypersaline lake ecosystem in Lake Tyrrell, Victoria, Australia, have been characterized using deep metagenomic sampling, iterative de novo assembly, and multidimensional phylogenetic binning. Composite genomes representing habitat-specific microbial populations were reconstructed for eleven different archaea and one bacterium, comprising between 0.6 and 14.1% of the planktonic community. Eight of the eleven archaeal genomes were from microbial species without previously cultured representatives. These new genomes provide habitat-specific reference sequences enabling detailed, lineage-specific compartmentalization of predicted functional capabilities and cellular properties associated with both dominant and less abundant community members, including organisms previously known only by their 16S rRNA sequences. Together, these data provide a comprehensive, culture-independent genomic blueprint for ecosystem-wide analysis of protein functions, population structure, and lifestyles of co-existing, co-evolving microbial groups within the same natural habitat. The “assembly-driven” community genomic approach demonstrated in this study advances our ability to push beyond single gene investigations, and promotes genome-scale reconstructions as a tangible goal in the quest to define the metabolic, ecological, and evolutionary dynamics that underpin environmental microbial diversity.  相似文献   
100.

SUMMARY

Pathogenic bacteria commonly deploy enzymes to promote virulence. These enzymes can modulate the functions of host cell targets. While the actions of some enzymes can be very obvious (e.g., digesting plant cell walls), others have more subtle activities. Depending on the lifestyle of the bacteria, these subtle modifications can be crucially important for pathogenesis. In particular, if bacteria rely on a living host, subtle mechanisms to alter host cellular function are likely to dominate. Several bacterial virulence factors have evolved to use enzymatic deamidation as a subtle posttranslational mechanism to modify the functions of host protein targets. Deamidation is the irreversible conversion of the amino acids glutamine and asparagine to glutamic acid and aspartic acid, respectively. Interestingly, all currently characterized bacterial deamidases affect the function of the target protein by modifying a single glutamine residue in the sequence. Deamidation of target host proteins can disrupt host signaling and downstream processes by either activating or inactivating the target. Despite the subtlety of this modification, it has been shown to cause dramatic, context-dependent effects on host cells. Several crystal structures of bacterial deamidases have been solved. All are members of the papain-like superfamily and display a cysteine-based catalytic triad. However, these proteins form distinct structural subfamilies and feature combinations of modular domains of various functions. Based on the diverse pathogens that use deamidation as a mechanism to promote virulence and the recent identification of multiple deamidases, it is clear that this enzymatic activity is emerging as an important and widespread feature in bacterial pathogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号